Tìm số nguyên tố p sao cho p+10 và p+14 là số nguyên tố?
a) Tìm p là số tự nhiên sao cho p+1;p+2;p+4 đều là số nguyên tố.
b) Tìm số nguyên tố p sao cho 2p2+1 cũng là số nguyên tố.
c) Tìm số nguyên tố p sao cho p+10 và p+14 cũng là số nguyên tố
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Tìm số nguyên tố p sao cho:
p+10 và p+14 đều là số nguyên tố
p+6,p+8 và p+14 đều là số nguyên tố
vi p la so nguyen to
đặt p = có dạng 3k, 3k+1, 3k+2
Thay vào
+>p+10=3k+10
p+14=3k+14(chọn)
+>p+10=3k+1+10=3k+11
p+14=3k+1+14=3k+15=>loại
+>p+10=3k+2+10=3k+12=>loại
Từ các bt trên suy ra snt cần tìm là 3
Các câu sau làm tuong tu
Tìm số nguyên tố P sao cho P + 10 và P +14 đều là số nguyên tố
Lời giải:
Nếu $p$ chia hết cho $3$ thì $p=3$. Khi đó $p+10, p+14$ cũng là snt (thỏa mãn)
Nếu $p$ chia $3$ dư $1$ thì đặt $p=3k+1$ với $k$ tự nhiên.
Khi đó $p+14=3k+15=3(k+5)\vdots 3$. Mà $p+14>3$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $3$ dư $2$ thì đặt $p=3k+2$ với $k$ tự nhiên.
Khi đó $p+10=3k+12=3(k+4)\vdots 3$. Mà $p+10>3$ nên không thể là snt (trái giả thiết - loại)
Vậy $p=3$ là đáp án duy nhất thỏa mãn.
Tìm số nguyên tố p sao cho p+10 và p+14 là số nguyên tố.
Tìm số nguyên tố sao cho p+10 và p+14 đều là số nguyên tố
Nếu p=2\(\Rightarrow\)p+10=12,là hợp số (loại)
Nếup=3 \(\Rightarrow\)p+10=13,p+14=17, đều là số nguyên tố nên p=3 thỏa mãn
Nếu p>3,p có thể có dạng :
+, p=3k +1\(\Rightarrow\)p+14=3k+15chia hết cho 3, loại p=3k+1
+, p=3k+2\(\Rightarrow\)p+10=3k+12, là hợp số , loai p=3k+2
Vậy p=3
Tìm số nguyên tố sao cho p+10 và p+14 cũng là số nguyên tố
tìm p là số nguyên tố sao cho p+10 và p+14 là một số nguyên tố
Ta có : p = 3 => p + 10 = 13 mà 13 là số nguyên tố => p + 10 là số nguyên tố
p = 3 => p + 14 = 17 mà 17 là số nguyên tố => p + 14 là số nguyên tố
+) Với p > 3 . Khi đó p chia cho 3 ta có 2 khả năng
- Trường hợp 1 : p = 3k + 1 => p + 14 = 3k + 1 + 14 = 3k + 15 = 3 ( k + 5 )
Mà : p + 14 > 3 => 3 ( k + 5 ) > 3 => 3 ( k + 5 ) là hợp số ( Vô lý )
- Trường hợp 2 : p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3 ( k + 4 )
Mà : p + 10 > 3 => 3 ( k + 4 ) > 3 => 3 ( k + 4 ) là hợp số ( Vô lý )
Vậy p = 3 thì p + 10 và p + 14 là số nguyên tố .
Tìm số nguyên tố p sao cho:
p+10 và p+14 đều là số nguyên tố
p+6,p+8,p+12 và p+14 đều là số nguyên tố
tìm số nguyên tố p sao cho p+10 và p+14 cũng là số nguyên tố ?
xét p=2=>p+10=12 chia hết cho 2
=>p+10 là hợp số(loại)
xét p=3=>p+10 và p+14 ần lượt bằng 13 và 17 là các số nguyên tố(thỏa mãn)
xét p>3=>p=3k+1;3k+2
xét p=3k+1=p+14=3k+1+14=3k+15=3(k+5) chia hết cho 3
=>p+14 là hợp số(loại)
xét p=3k+2=>p+10=3k+2+10=3k+12=3(k+4) chia hết cho 3
=>p+10 là hợp số(loại)
vậy p=3
Tìm số nguyên tố p sao cho p + 10 và p+ 14 cũng là số nguyên tố
do p là số nguyên tố suy ra p=2
xét p=2 suy ra p+10=12(ko là số nguyên tố)
xét p=3 suy ra p+10=13(là số nguyên tố),p+14=17(là số nguyên tố)
Suy ra p=3 thỏa mãn đề bài
p=14 chia hết cho 3 mà p+14>3 suy ra p+14 ko là số nguyên tố,vô lý
Vậy với p là số nguyên tố > 3 thì p ko thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
Chúc Yoon học giỏi!