Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Việt Tùng
Xem chi tiết
Trần Phạm
Xem chi tiết
Đức Ngô
Xem chi tiết
Kẻ Dối_Trá
31 tháng 7 2016 lúc 17:24

dựng tia Bx cắt cạnh AC tại D sao cho góc CBx = 20o 
có gócBCD = 80o => góc BDC = 180o-20o-80o = 80o = góc BCD 
=> tgiác BCD cân (tại B) ; gọi H là hình chiếu của A trên Bx 
có góc ABH = 80o - 20o = 60o => HAB là nửa tgiác đều 
=> BH = AB/2 = b/2 ; AH^2 = 3b^2/4 
BD = BC = a => DH = BH-BD = b/2 - a 
hai tgiác cân BCD và ABC đồng dạng => CD/BC = BC/AB 
=> CD = BC^2/AB = a^2/b 
=> AD = AC - CD = b - a^2/b 

Cho tgiác vuông HAD ta có: AD^2 = AH^2 + DH^2 
Thay số từ các tính toán trên: 
(b - a^2/b)^2 = 3b^2/4 + (b/2 - a)^2 
<=> b^2 + a^4/b^2 - 2a^2 = 3b^2/4 + b^2/4 + a^2 - ab 
<=> a^4/b^2 = 3a^2 - ab 
<=> a^3/b^2 = 3a - b 
<=> a^3 = 3a.b^2 - b^3 
<=> a^3 + b^3 = 3a.b^2 đpcm 

Hồ Văn Đạt
6 tháng 2 2020 lúc 9:42

khó hiểu quá

Khách vãng lai đã xóa
HoàngPhúc123
Xem chi tiết
phương thảo nguyễn thị
Xem chi tiết
Songoku Sky Fc11
30 tháng 7 2017 lúc 12:29

Trần Minh Phong sao làm giống trong cho tam giac ABC, AB=AC=b,A=20,BC=a.CM:a3+b3= 3ab2? | Yahoo Hỏi & Đáp

OoO_Nhok_Lạnh_Lùng_OoO
30 tháng 7 2017 lúc 12:25

Trên đường thẳng BC lấy D; E sao cho ∆ ADE đều (B ở giữa C và D). Gọi H là trung điểm BC và DE. Đặt AD = DE = x => BD = (DE -

BC)/2 = (x - a)/2; 2BH = BC => 4BH² = a² 

Ta có : 3x² = 3AD² = 4AH² = 4(AB² - BH²) = 4b² - a² 

Mặt khác dễ thấy AB là phân giác góc A của ∆ ADC nên ta có : AD/AC = BD/BC <=> x/b = (x - a)/2a <=> (b - 2a)x = ab <=> (b -

2a)²(3x²) = 3a²b² <=> (b - 2a)²(4b² - a²) = 3a²b² <=> b⁴ - a⁴ - 4ab³ + a³b + 3a²b² = 0 

<=> (b - a)(a³ + b³ - 3ab²) = 0 

<=> a³ + b³ - 3ab² = 0 (vì b > a) 

<=> a³ + b³ = 3ab² (đpcm)

Giải theo cách lớp ≤ 9 
Trên đường thẳng BC lấy D; E sao cho ∆ ADE đều (B ở giữa C và D). Gọi H là trung điểm BC và DE. Đặt AD = DE = x => BD = (DE - BC)/2 = (x - a)/2; 2BH = BC => 4BH² = a² 
Ta có : 3x² = 3AD² = 4AH² = 4(AB² - BH²) = 4b² - a² 
Mặt khác dễ thấy AB là phân giác góc A của ∆ ADC nên ta có : AD/AC = BD/BC <=> x/b = (x - a)/2a <=> (b - 2a)x = ab <=> (b - 2a)²(3x²) = 3a²b² <=> (b - 2a)²(4b² - a²) = 3a²b² <=> b⁴ - a⁴ - 4ab³ + a³b + 3a²b² = 0 
<=> (b - a)(a³ + b³ - 3ab²) = 0 
<=> a³ + b³ - 3ab² = 0 (vì b > a) 
<=> a³ + b³ = 3ab² (đpcm) 

HOẶC BN CŨNG CÓ THỂ LÀM THEO CÁCH SAU

dựng tia Bx cắt cạnh AC tại D sao cho góc CBx = 20o 
có gócBCD = 80o => góc BDC = 180o-20o-80o = 80o = góc BCD 
=> tgiác BCD cân (tại B) ; gọi H là hình chiếu của A trên Bx 
có góc ABH = 80o - 20o = 60o => HAB là nửa tgiác đều 
=> BH = AB/2 = b/2 ; AH^2 = 3b^2/4 
BD = BC = a => DH = BH-BD = b/2 - a 
hai tgiác cân BCD và ABC đồng dạng => CD/BC = BC/AB 
=> CD = BC^2/AB = a^2/b 
=> AD = AC - CD = b - a^2/b 

pitago cho tgiác vuông HAD ta có: AD^2 = AH^2 + DH^2 
thay số từ các tính toán trên: 
(b - a^2/b)^2 = 3b^2/4 + (b/2 - a)^2 
<=> b^2 + a^4/b^2 - 2a^2 = 3b^2/4 + b^2/4 + a^2 - ab 
<=> a^4/b^2 = 3a^2 - ab 
<=> a^3/b^2 = 3a - b 
<=> a^3 = 3a.b^2 - b^3 
<=> a^3 + b^3 = 3a.b^2 đpcm

Nguyễn Trang
Xem chi tiết
Nguyễn Hưng Phát
20 tháng 12 2015 lúc 19:05

Ai tick mik với, từ chiều đến giờ mik chỉ mới được 6 ****

Đào Ngọc Văn
Xem chi tiết
DSQUARED2 K9A2
16 tháng 9 2023 lúc 14:37

a: Xét ΔADB và ΔADC có

AB=AC
góc BAD=góc CAD

AD chung

=>ΔADB=ΔADC

b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

góc EAD=góc FAD

=>ΔAED=ΔAFD
=>AE=AF và DE=DF

c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

Lê Hạnh Nguyên
Xem chi tiết
Bao Ngoc Nguyen
Xem chi tiết

a: Ta có: \(\widehat{MAD}=\widehat{BAD}\)(AD là tia phân giác của góc BAC)

\(\widehat{BAD}=\widehat{MDA}\)(hai góc so le trong, AB//DM)

Do đó: \(\widehat{MAD}=\widehat{MDA}\)

=>ΔMAD cân tại M

b: Xét ΔMND và ΔBDN có

\(\widehat{MND}=\widehat{BDN}\)(hai góc so le trong, NM//BD)

ND chung

\(\widehat{MDN}=\widehat{BND}\)(hai góc so le trong, MD//BN)

Do đó: ΔMND=ΔBDN

c: Ta có: ΔMND=ΔBDN

=>MD=BN

mà MD=MA

nên MA=BN