Tìm min (x+1)(x+2)(x+3)(x+4)+1
1) Cho 0 < x < 2 Tìm min A = 2/(2-x) +1/x
2) Cho x>1 Tìm min A = x/2 +2/(x-1)
3) cho 0 < x<1 tìm min A = x/(x-1) +4/x
Tìm Min \(T=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)
tìm min của D = |x - 1| + |x - 2| + |x - 3| + |x - 4|
tìm min của D = |x - 1| + |x - 2| + |x - 3| + |x - 4|
woa! anh no name đẹp trai kìa
D=(|x-1|+|4-x|)+(|x-2|+|3-x|)
Áp dụng bđt GTTĐ |A|+|B|\(\ge\)|A+B| ta có:
\(\left|x-1\right|+\left|4-x\right|\ge3\)Dấu = xảy ra \(\Leftrightarrow\left(x-1\right).\left(4-x\right)\ge0\Rightarrow1\le x\le4\)(1)
\(\left|x-2\right|+\left|3-x\right|\ge1\)Dấu = xảy ra \(\Leftrightarrow\left(x-2\right).\left(3-x\right)\ge0\Rightarrow2\le x\le3\)(2)
Dấu = xảy ra khi dấu = ở (1);(2) đồng thời xảy ra \(\Rightarrow2\le x\le3\)
MinD=4\(\Leftrightarrow2\le x\le3\)
:D hok tốt
Tìm Min của A = (x+1)(x+2)(x+3)(x+4)
(x-1)(x+2)(x+3)(x+6)
=[(x-1)(x+4)][(x+2)(x+3)]
=(x^2+5x-4)(x^2+5x+4)
=(x^2+5x)^2-36>=-36
=>min=-36<=>x=0 hoặc x=-5
Tìm Min A=x(x+1)(x^2+x-4)
B=(x2+5x+5) ( (x+2)(x+3)+1 )
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
tìm min
A = (x+1)(x+2)(x+3)(x+4)+18
\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+18\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+18\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+18\)
Đặt \(x^2+5x+4=a\)(cho dễ nhìn)
\(\Rightarrow A=a\left(a+2\right)+18=a^2+2a+18\)
\(=\left(a+1\right)^2+17\ge17\)
1.Tìm Min A=-4+Giá trị tuyệt đối của 1-2x
2.Tìm Max B=-1/2 -GTTĐ của 3+1
3. Tìm Min C=GTTĐ của (x-1)+GTTĐ của (x-2 )+5
Bài 1)tìm Min hay Max
a) G=\(\dfrac{2}{x^2+8}\)
b) H=\(\dfrac{-3}{x^2-5x+1}\)
Bài 2) Tìm Min hay Max
a)D=\(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
b)E=\(\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}\)
c)G=\(\dfrac{3x^2-12x+10}{x^2-4x+5}\)
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)