Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuân Thường Đặng
Xem chi tiết
Pham Thi Thoan
Xem chi tiết
Cô Hoàng Huyền
30 tháng 1 2018 lúc 15:43

Ta có các tam giác vuông AOS; HOS, BOS có chung cạnh huyền OS nên S, A, H, O, B nội tiếp đường tròn đường kính OS.

Khi đó ta có :

\(\widehat{ASH}=\widehat{ABH}\) (Hai góc nội tiếp cùng chắn cung AH)

Mà \(\widehat{ASH}=\widehat{FDH}\)  (Hai góc đồng vị)

\(\Rightarrow\widehat{ABH}=\widehat{FDH}\)

Suy ra tứ giác HFDO nội tiếp.

Từ đó ta có \(\widehat{FHD}=\widehat{ABD}\)(Hai góc nội tiếp)

Mà \(\widehat{ABD}=\widehat{ACD}\) (Hai góc nội tiếp)

Nên \(\widehat{FHD}=\widehat{ACD}\)

Chúng lại ở vị trí đồng vị nên HF // AC.

Xuân Thường Đặng
Xem chi tiết
phạm trung hiếu
Xem chi tiết
Võ Tuấn Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 8:51

a: Xét (O) có

ΔBAC nội tiếp

AC là đường kính

Do đó: ΔBAC vuông tại B

Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BC}=\dfrac{1}{2}\cdot60^0=30^0\)

Gọi H là giao điểm của BD với AC

BD\(\perp\)AC nên BD\(\perp\)AC tại H

ΔOBD cân tại O

mà OH là đường cao

nên H là trung điểm của BD

Xét ΔCBD có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCBD cân tại C

=>CB=CD

Xét ΔCOD và ΔCOB có

CD=CB

OD=OB

CO chung

Do đó: ΔCOD=ΔCOB

=>\(\widehat{COD}=\widehat{COB}\)

=>\(sđ\stackrel\frown{CB}=sđ\stackrel\frown{CD}=60^0\)

Xét ΔBAC vuông tại B có \(\widehat{BAC}+\widehat{BCA}=90^0\)

=>\(\widehat{BCA}+30^0=90^0\)

=>\(\widehat{BCA}=60^0\)

Xét (O) có

\(\widehat{BCA}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{BCA}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AB}\)

=>\(sđ\stackrel\frown{AB}=2\cdot\widehat{BCA}=120^0\)

DF//AC

DB\(\perp\)AC

Do đó: DF\(\perp\)DB

=>ΔDFB vuông tại D

ΔDFB vuông tại D

nên ΔDFB nội tiếp đường tròn đường kính BF

mà ΔDFB nội tiếp (O)

nên O là trung điểm của BF

=>OA//DF

=>\(\widehat{BFD}=\widehat{BOH}=\widehat{BOC}\)(hai góc đồng vị)

=>\(\widehat{BFD}=60^0\)

ΔBDF vuông tại D

=>\(\widehat{BFD}+\widehat{FBD}=90^0\)

=>\(\widehat{FBD}+60^0=90^0\)

=>\(\widehat{FBD}=30^0\)

Xét (O) có

\(\widehat{FBD}\) là góc nội tiếp chắn cung FD

Do đó: \(\widehat{FBD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{FD}\)

=>\(sđ\stackrel\frown{FD}=2\cdot\widehat{FBD}=2\cdot\)30=60 độ

 

Nguyễn Thị Ly
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết