Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hồng còi thúy
Xem chi tiết
Ngô Quang Huy
7 tháng 12 2015 lúc 17:49

a)      nối A với C ,  B với D được:

EF // AC ( đường trung bình của tam giác BAC)

HG // AC ( "         "          "          "        "          "       ) suy ra EF // AC  do cùng // AC

HE // DB ( đường trung bình tam giác ADB  )

FG // DB ( "     "           "         "         "         "        ) suy ra HE // FG  do cùng // với DB

Xét tứ giác EFGH có 2 cặp cạnh đối song song  nên EFGH là hình bình hành

b)  EFGH là hình ....

Thoi , suy ra EH = GH  nên AC=BD  ( do là đường trung bình của hai tam giác ADB,ADC)

vì AC = BD nên ABCD là hình thang cân

Chữ nhật, suy ra HE vuông góc với HG  nên AC vuông góc với  BD

Hình vuông   ,   kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.

Tích nha☺

 

Tôi Là Ai
Xem chi tiết
Le Thi Khanh Huyen
Xem chi tiết
Giang Hồ Đại Ca
30 tháng 8 2016 lúc 9:01

THam khảo nha : 

Xét bài toán: Cho tam giác ABC.ABC. Dựng hình vuông ABEFABEF và ACGHACGH phía ngoài tam giác. P,P, QQ theo thứ tự là tâm của hình vuông ABEFABEF và ACGH.ACGH. Lấy MMtrung điểm BC.BC. Chứng minh tam giác PQMPQM vuông cân tại M.M.

Lời giải: 

Dễ dàng chứng minh được MPMP và MQMQ theo thứ tự là đường trung bình của tam giác BCFBCF và BCH.BCH.

Suy ra MP∥CF ; MP=12CFMP∥CF ; MP=12CF và MQ∥BH ; MQ=12BH.   (1)MQ∥BH ; MQ=12BH.   (1)

Ta có: 

ˆBAH=ˆBAF+ˆFAH=90∘+ˆFAHBAH^=BAF^+FAH^=90∘+FAH^

ˆCAF=ˆCAH+ˆFAH=90∘+ˆFAHCAF^=CAH^+FAH^=90∘+FAH^

Do đó ˆBAH=ˆCAF.BAH^=CAF^.

Từ đó chứng minh được △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c)

⇒ˆFCA=ˆBHA⇒FCA^=BHA^

Gọi II và OO theo thứ tự là giao điểm của CFCF với BHBH và AH.AH.

Khi đó ˆOCA=ˆIHOOCA^=IHO^

Mà ˆOCA+ˆAOC=90∘OCA^+AOC^=90∘ và ˆAOC=ˆIOHAOC^=IOH^ ((đối đỉnh))

Nên ˆIHO+ˆIOH=90∘,IHO^+IOH^=90∘, suy ra ˆHIO=90∘HIO^=90∘

Do đó IH⊥IOIH⊥IO hay BH⊥CF.    (2)BH⊥CF.    (2)

Vì △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c) nên CF=BH.     (3)CF=BH.     (3)

Từ (1),(1), (2)(2) và (3)(3) suy ra MP=MQMP=MQ và MP⊥MQ.MP⊥MQ. Vậy tam giác MPQMPQ vuông cân tại M.M.

★★★★★★★★★★★★★★★★

Quay lại bài toán. Gọi MM là trung điểm ACAC

Áp dụng kết quả trên, ta chứng minh được tam giác EMFEMF và HMGHMG vuông cân tại M.M.

Từ đó chứng minh được △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c)

Rồi suy ra EG=HFEG=HF và EG⊥HF.EG⊥HF.

b)b) Gọi PP và QQ lần lượt là trung điểm HFHF và EGEG

Từ △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c) dễ dàng chứng minh được △MPF=△MQE (c.g.c)△MPF=△MQE (c.g.c)

Suy ra MP=MQMP=MQ và ˆPMF=ˆQME ⇒ ˆPMQ=ˆEMF=90∘PMF^=QME^ ⇒ PMQ^=EMF^=90∘

Do đó tam giác MPQMPQ vuông cân tại MM

Gọi NN trung điểm BD.BD. Chứng minh tương tự như trên, ta được tam giác NPQNPQ vuông cân tại N.N.

Suy ra tứ giác MPNQMPNQ là hình vuông.

Thục Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 10 2021 lúc 22:02

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của DC

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EHGF là hình bình hành

Nguyễn Ngọc Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2023 lúc 20:41

a: Xét ΔBAC có

E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình

=>EF//AC và EF=AC/2

Xét ΔCDA có

G,H lần lượt là trung điểm của DC,DA

=>GH là đường trung bình

=>GH//AC và GH=AC/2

=>EF//GH và EF=GH

Xét tứ giác EFGH có

EF//GH

EF=GH

=>EFGH là hình bình hành

b: Để EFGH là hình chữ nhật thì HE vuông góc EF

=>AC vuông góc BD

Nguyễn Ngọc Huyền
Xem chi tiết
Nguyễn Ngọc Huyền
21 tháng 12 2018 lúc 21:20

giúp mình với sắp thi rồi

Huỳnh Thanh Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2022 lúc 22:58

a: Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình

=>EF//AC và EF=AC/2(1)

Xét ΔCDA có 

G là trung điểm của CD

H là trung điểm của DA

Do đó: GH là đường trung bình

=>GH//AC và GH=AC/2(2)

Từ (1) và (2) suy ra EF//GH và EF=GH

hay EFGH là hình bình hành

b: EF=GH=AC/2=3(cm)

FG=EH=BD/2=4(cm)

Nguyễn Ngọc Huyền
Xem chi tiết
Vịt Béo Béo
22 tháng 12 2018 lúc 19:15

Tứ giác có thể là hình vuông, chữ nhật phải không bạn?

P/s: Hỏi thôi chớ không trả lời đâu :D

Kông túa
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2021 lúc 20:59

Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của CD

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//FG và EH=FG

hay EHGF là hình bình hành

Nguyễn Thị Huyền Diệu
Xem chi tiết