tìm số đo của mỗi góc ABC biết số đo 3 góc có tỉ lệ là 1,2,3.Khi đó tam giác ABC là tam giác gì?
Tìm số đo mỗi góc tam giác abc biết số đo ba góc có tỉ lệ là 1,2,3 khi đó tam giác abc là tam giác gì?
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
Ta có: Số đo ba góc của ΔABC lần lượt tỉ lệ với 1;2;3(gt)
nên \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\dfrac{180^0}{6}=30^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{A}}{1}=30^0\\\dfrac{\widehat{B}}{2}=30^0\\\dfrac{\widehat{C}}{3}=30^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=30^0\\\widehat{B}=60^0\\\widehat{C}=90^0\end{matrix}\right.\)
Vậy: ΔABC là tam giác vuông
Tìm số đo mỗi góc của tam giác ABC biết số đo ba góc có tỉ lệ là 1:2:3. Khi đó tam giác ABC là tam giác gì?
tam giác vuông( có cần giải chi tiết ko vậy)
tìm số đo mỗi góc của tam giác ABC biết số đo 3 góc có tỉ lệ là 1 : 2 : 3 . Khi đó tam giác ABC là tam giác gì ?
tìm số đo mỗi góc của tam giác ABC biết số đo 3 góc co tỉ lệ là 1;2;3 . Khi đó tam giác ABC là tam giác gì?
Gọi số đo của 3 tam giác đó lần lượt là a, b, c
Ta có :
a + b + c = 1800 (định lí tổng 3 góc of 1 tam giác )
a/1 = b/2 = c/3
Theo t,c dãy tỉ số bằng nhau ta có :
a/1 = b/2 = c/3 = a + b + c/ 1 + 2 + 3 = 1800/6 = 300
Suy ra :
+) a/1 = 30 => a = 30
+) b/2 = 30 => b = 60
+) c/3 = 30 => c = 90
Vậy tam giác đó là tam giác vuông
Theo bài ra, ta có:\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)và \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)=\(\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}\)=\(\frac{180^0}{6}\)=300
Do đó: \(\widehat{A}=30^0.1=30^0\)
\(\widehat{B}=30^0.2=60^0\)
\(\widehat{C}=30^0.3=90^0\)
Vì tam giác ABC có góc C=900
Nên tam giác ABC là tam giác vuông tại C
Gọi số đo của tam giác là a , b , c
Theo đề bài ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\) và \(a+b+c=180\)độ ( Định lý tổng 3 góc của 1 tam giác )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\)\(a=30.1=30\)
\(\Rightarrow\)\(b=30.2=60\)
\(\Rightarrow\)\(c=30.3=90\)
Vì trong tam giác có 1 góc bằng 90 độ nên tam giác đó là tam giác vuông
tìm số đo mỗi tam giác ABC biết số đo góc tỉ lệ với 1; 2; 3 , khi đó tam giác ABC là tam giác gì
Gọi ba góc A,B,C của tam giác đó lần lượt là a,b,c(a,b,c>0)
Theo đề ta có:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và a+b+c=180(vì tổng 3 góc của 1 tam giác bằng 180 độ)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180}{6}=30\)
=>a=30.1=30
=>b=30.2=60
=>c=30.3=90
Vậy tam giác ABC có góc A bằng 30 độ,góc B bằng 60 độ và góc C bằng 90 độ.
Vì góc C bằng 90 độ nên tam giác ABC là tam giác vuông(vuông tại C).
Tìm số đo mỗi góc của tam giác ABC ,biết số đo ba góc đó tỉ lệ với 1;2;3 . Khi đó tam giác ABC la tam giác gì
Gọi số đo ba góc của tam giác ABC lần lượt là A,B,C
Theo đề bài ,ta có:
A/1=B/2=C/3 và A+B+C=180
=>A/1=B/2=C/3=(A+B+C)/(1+2+3)=(A+B+C)/6=180/6=30
Do đó:
+)A/1=30=>A=30
+)B/2=30=>B=60
+)C/3=30=>C=90
Vậy số đo ba góc của tam giác ABC lần lượt là :30,60,90
Vậy tam giác ABC là tam giác vuông
tìm số do các góc của tam giác ABC biết số do 3 góc tỉ lệ là 1 2 3 khi đo tam giác ABC là tam giác gì
tam giác ABC biết số do 3 góc tỉ lệ là 1 2 3
=> \(\dfrac{A}{1}=\dfrac{B}{2}=\dfrac{C}{3}\)
mà \(A+B+C=180^o\) (tổng 3 góc trong tam giác)
áp dụng DTSBN ta có
\(\dfrac{A}{1}=\dfrac{B}{2}=\dfrac{C}{3}=\dfrac{A+B+C}{1+2+3}=\dfrac{180}{6}=30\)
\(=>A=30\cdot1=30^o\\ B=30\cdot2=60^o\\ C=30\cdot3=90^o\)
tam giác ABC là tam giác vuông tại C
Tìm số đo mỗi góc của tam giác ABC biết số đo 3 góc của tam giác đó tỉ lệ là 1;2;3
Theo đề bài ta có: \(\frac{A}{1}\); \(\frac{B}{2}\); \(\frac{C}{3}\)và A+B+C=180
\(\frac{A}{1}+\frac{B}{2}+\frac{C}{3}=\frac{A+B+C}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\frac{A}{1}=30\Rightarrow A=30\cdot1=30^0\)
\(\Rightarrow\frac{B}{2}=30\Rightarrow B=30\cdot2=60^0\)
\(\Rightarrow\frac{C}{3}=30\Rightarrow C=30\cdot3=90^0\)
Gọi số đo 3 góc của tam giác lần lượt là: x,y,z và x,y,z phải là số dương.
Theo đề bài ta có
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) và x+y+z=180
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)
\(\frac{x}{1}=30.1=30\)\(\frac{x}{2}=30.2=60\)\(\frac{x}{3}=30.3=90\)Vậy số đo các góc của tam giác lần lượt là: 30,60,90.
mk nhé bạn ^...^ ^_^
Tìm số đo mỗi góc của tam giác ABC biết số đo ba góc là 1:2:3.Khi đó tam giác ABC là tam giác gì?
Gọi số đo ba góc của tam giác ABC lần lượt là A,B,C
Theo đề bài ,ta có:
A/1=B/2=C/3 và A+B+C=180
=>A/1=B/2=C/3=(A+B+C)/(1+2+3)=(A+B+C)/6=180/6=30
Do đó:
+)A/1=30=>A=30
+)B/2=30=>B=60
+)C/3=30=>C=90
Vậy số đo ba góc của tam giác ABC lần lượt là :30,60,90
Vậy tam giác ABC là tam giác vuông
Gọi x,y,z theo thứ thứ tự là số vòng quay của kim giờ,kim phút,kim giây trong cùng 1 thời gian
a)Điền số thích hợp vào các ô trống trong 2 bảng sau:
x | 1 | 2 | 3 | 4 |
y |
y | 1 | 6 | 12 | 18 |
z |
b)viết công thức biểu diễn y theo x và z theo y
c)số vòng quay x của kim giờ và spoos vòng quay z của kim giây có tỉ lệ thuận với nhau o?Nếu có, hãy tìm hệ số tỉ lệ của z đối với x
d) Khi kim giờ quay được 5 vòng thì kim giây quay được bao nhiêu vòng
tam giác ABC có số đo là góc A,góc B,góc C lần lượt là tỉ lệ với 1,2,3.Tính số đo các góc tam giác ABC lớp 7
Answer:
Ta có: Ba góc của tam giác lần lượt tỉ lệ với 1, 2, 3
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\) và \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=30^o\)
\(\Rightarrow\frac{\widehat{A}}{1}=30^o\Rightarrow\widehat{A}=30^o\)
\(\Rightarrow\frac{\widehat{B}}{2}=30^o\Rightarrow\widehat{B}=60^o\)
\(\Rightarrow\frac{\widehat{C}}{3}=30^o\Rightarrow\widehat{C}=90^o\)