Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hải anh
Xem chi tiết
Nguyển Thủy Tiên
Xem chi tiết
Đoàn Minh Hiếu
Xem chi tiết
Nguyễn Linh Chi
10 tháng 7 2019 lúc 17:11

Em tham khảo nhé!

Câu hỏi của channel Anhthư - Toán lớp 7 - Học toán với OnlineMath

Hoa Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2021 lúc 20:49

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13(cm)

Nguyễn Lê Phước Thịnh
30 tháng 4 2021 lúc 20:50

b) Xét ΔMKC và ΔMAB có 

MK=MA(gt)

\(\widehat{KMC}=\widehat{AMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMKC=ΔMAB(c-g-c)

Nguyễn Lê Phước Thịnh
30 tháng 4 2021 lúc 20:51

c) Ta có: ΔMKC=ΔMAB(cmt)

nên \(\widehat{MKC}=\widehat{MAB}\)(hai góc tương ứng)

mà \(\widehat{MKC}\) và \(\widehat{MAB}\) là hai góc ở vị trí so le trong

nên AB//KC(Dấu hiệu nhận biết hai đường thẳng song song)

mà AB\(\perp\)AC(ΔABC vuông tại A)

nên KC\(\perp\)AC(Đpcm)

Hot Girl
Xem chi tiết
Hot Girl
Xem chi tiết
redf
Xem chi tiết
muôn năm Fa
Xem chi tiết
Team Free Fire 💔 Tớ Đan...
6 tháng 2 2020 lúc 19:05

mk ko bt lm câu b nha ~ xl

Khách vãng lai đã xóa
Team Free Fire 💔 Tớ Đan...
6 tháng 2 2020 lúc 19:08

c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)

=> DM = AD = AM

Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)

=> BD = MC (cặp cạnh tương ứng)

Ta có: DM = AM, BD = MC

=> DM : BM : BD = 3:4:5

=> tam giác BDM vuông tại M

=> góc AMB = 90o + 60o = 150o

Khách vãng lai đã xóa
Team Free Fire 💔 Tớ Đan...
6 tháng 2 2020 lúc 19:09

a, Xét tam giác ABM và AMC có

BC=BA ( tam giác đều )

BMC=BMA=90độ

Góc C=A

=> ABM=AMC 

Khách vãng lai đã xóa
Midori
Xem chi tiết
Đông Phương Lạc
22 tháng 8 2019 lúc 10:19

Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!

C/m:

Từ giả thiết ta có:

\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\)                 \(\left(.\right)\)

\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)

\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)

Giả sử \(MA\ne MB\)ta xét 2 trường hợp:

T/ hợp 1\(MA< MB\)

Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)

Nguyễn Linh Chi
22 tháng 8 2019 lúc 11:03

Nối MA.

Để chứng minh MA =MB. Ta dùng phản chứng.

G/s: \(MA\ne MB\)

Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)

Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)

Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)

+) TH1: MA> MB=MC

Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)

Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)

+) TH1: MA< MB=MC

Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)

Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)

=> Điều giả sử là sai

=> MA=MB

Đông Phương Lạc
22 tháng 8 2019 lúc 16:15

Làm tiếp nè:

Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A_2}\)( quan hệ góc - cạnh đối diện )

Vì \(MC=MB\)nên \(MA< MC\)

Do đó: \(\widehat{C_2}< \widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))

Suy ra: \(\widehat{B}_2+\widehat{C_2}< \widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0< \widehat{BAC}\): trái với \(\left(.\right)\)

T/hợp 2: \(MA>MB\)

Xét \(\Delta MAB,\)vì \(MA>MB\)nên \(\widehat{B_2}>\widehat{A_2}\)( quan hệ góc - cạnh đối diện )

Vì \(MC=MB\)nên \(MA>MC\)

Dó đó: \(\widehat{C_2}>\widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))

Suy ra: \(\widehat{B}_2+\widehat{C_2}>\widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0>\widehat{BAC}\): trái với \(\left(.\right)\)

Vậy điều giả sử \(MA\ne MB\)là sai, hay \(MA=MB\)

Bài làm của mk hay của Cô Linh Chi đều đc nha !