CHo a,b,c,d > 0 thỏa mãn a/b=c/d.
CMR ( a+2c/b+2d)^2 = a^2+2c^2/ b^2+ 2d^2
cho a số nguyên a, b,c ,d thỏa mãn 2d=a+c , 2c+b+d , a2+d2<4 . Tìm a , biết b= 2
Cho a,b,c,d >0, a + b + c + d=4.cmr: a/(1 + b^2c) + b/(1 + c^2d) + c/(1 + d^2a) + d/(1 + a^2b) >=2
Tìm 4 số nguyên a,b,c,d thỏa mãn 2d=a+c , 2c=b+d , a2+d2<4 . Tim a , biết b = 2
Tìm 5 số nguyên a,b,c,d,e thỏa mãn :
a2 = a + b - 2c + 2d + e + 8
b2 = -a - 2b - c + 2d + 2e - 6
c2 = 3a + 2b + c + 2d + 2e - 31
d2 = 2a + b + c + 2d + 2e - 2
e2 = a + 2b + 3c + 2d + e - 8
a) a+2c/ b+2d = a-2c/ b-2d
b) a^2 +c^2 / b^2 + d^2 = ac/bd
cho a,b,c,d>0 và \(a^2+b^2+c^2+d^2=1\)
CMR : \(a^2b^2cd+ab^2c^2d+a^2bcd^2+a^2bc^2d+ab^2cd^2+abc^2d^2\) \< \(\dfrac{3}{32}\)
1)Cho a/a+b=c/c+d Chứng minh rằng: a/b= c/d 2)cho a/b=c/d, chứng minh rằng a)3a+2c/3b+2d=-5a+3c/-5b+3d b)a^2/b^2=2c^2-ac/2d^2-b-d NHANH NHA! MÌNH ĐANG CẦN GẤP!!!
cho a , b , c , d > 0 thỏa mãn : a/2b = b/2c = c/2d = d/2a
tính A = 2011a - 2010b / c+d + 2011b -2010c / d+a + 2011c- 2010d / a+b + 2011d
Vì a,b,c,d>0 ta áp dụng t/c dãy tỉ số bằng nhau:
`a/(2b)=b/(2c)=c/(2d)=d/(2a)=(a+b+c+d)/(2a+2b+2c+2d)=1/2`
`=>a/(2b)=1/2=>a=b`
Tương tự ta có:`b=c,c=d,d=a`
`=>a=b=c=d`
`=>A=(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)=1/2+1/2+1/2+1/2=2`
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2b+2c+2d+2a}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{2b}=\dfrac{1}{2}\\\dfrac{b}{2c}=\dfrac{1}{2}\\\dfrac{c}{2d}=\dfrac{1}{2}\\\dfrac{d}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Leftrightarrow a=b=c=d\)
Ta có: \(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{d+a}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)
cho a/b=c/d. CMR:
a,5a-3b/3a+2b=5c-3d/3c+2d
b,2a+7b/a-2b=2c+d/c-2d
c,ac/bd=(ac)mũ 2/(bd)mũ 2
d,2a mũ 2+3c mũ 2/3b mũ 2+3d mũ 2=5a mũ 2-2c mũ 2/2b mũ 2- 2d mũ 2