Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kayasari Ryuunosuke
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
19 tháng 9 2023 lúc 15:54

a) Vì G là trọng tâm tam giác ABC nên \(GM = \dfrac{1}{3}AM\)

Kẻ \(BP \bot AM\) ta có

 \(\begin{array}{l}{S_{GMP}} = \dfrac{1}{2}BP.GM\\{S_{ABM}} = \dfrac{1}{2}BP.AM\end{array}\)

\( \Rightarrow \dfrac{{{S_{GMP}}}}{{{S_{ABM}}}} = \dfrac{{GM}}{{AM}} = \dfrac{1}{3} \Rightarrow {S_{GMP}} = \dfrac{1}{3}{S_{ABM}}\)(1)                         

Tương tự, kẻ \(CN \bot AM\), ta có  

\(\begin{array}{l}{S_{GMC}} = \dfrac{1}{2}CN.GM\\{S_{ACM}} = \dfrac{1}{2}CN.AM\\ \Rightarrow \dfrac{{{S_{GMC}}}}{{{S_{ACM}}}} = \dfrac{{GM}}{{AM}} = \dfrac{1}{3} \Rightarrow {S_{GMC}} = \dfrac{1}{3}{S_{ACM}}\left( 2 \right)\end{array}\)

Cộng 2 vế của (1) và (2) ta có: 

\(\begin{array}{l}{S_{GMB}} + {S_{GMC}} = \dfrac{1}{3}\left( {{S_{AMC}} + {S_{ABM}}} \right)\\ \Rightarrow {S_{GBC}} = \dfrac{1}{3}{S_{ABC}}\end{array}\)

b) 

Ta có

\(\begin{array}{l}{S_{GAB}} = \dfrac{1}{2}BP.AG\\{S_{GAC}} = \dfrac{1}{2}CN.AG\end{array}\)

Xét \(\Delta BPM\) và \(\Delta CNM\) có:

\(\widehat {BPM} = \widehat {CNM} = {90^0}\)

 BM = CM ( M là trung điểm của BC)

\(\widehat {PMB} = \widehat {CMN}\)(2 góc đối đỉnh)

\( \Rightarrow \Delta BPM = \Delta CNM\)(cạnh huyền – góc nhọn)

\( \Rightarrow \) BP = CN (cạnh tương ứng)

\( \Rightarrow {S_{GAB}} = {S_{GAC}}\)

Ta có: \(AG = \dfrac{2}{3}AM\)

\(\begin{array}{l}{S_{ACB}} = {S_{GAB}} + {S_{GAC}} + {S_{GCB}}\\ \Rightarrow {S_{ACB}} = {S_{GAB}} + {S_{GAC}} + \dfrac{1}{3}{S_{ABC}}\\ \Rightarrow \dfrac{2}{3}{S_{ABC}} = 2{S_{GAC}}\\ \Rightarrow \dfrac{1}{3}{S_{ABC}} = {S_{GAC}} = {S_{GAB}}\end{array}\)

Minh Nguyễn Cao
Xem chi tiết
Nguyễn Tất Đạt
19 tháng 7 2018 lúc 13:02

A B C G M N E F d I

Qua 2 điểm B và C kẻ đường thẳng song song với đường thẳng d cắt tia AG lần lượt tại E và F

Gọi AI là trung tuyến của \(\Delta\)ABC

Theo ĐL Thales ta có các tỉ số: \(\frac{AB}{AM}=\frac{AE}{AG};\frac{AC}{AN}=\frac{AF}{AG}\)

\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AE+AF}{AG}=\frac{2AE+IE+IF}{AG}\)

Dễ thấy \(\Delta\)BEI=\(\Delta\)CFI (g.c.g) => IE = IF (2 cạnh tương ứng) => IE + IF = 2.IE

\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{2AE+2IE}{AG}=\frac{2AI}{AG}=\frac{3AG}{AG}=3\)

\(\Leftrightarrow\left(\frac{AB}{AM}+\frac{AC}{AN}\right)^2=9\ge4.\frac{AB.AC}{AM.AN}\)(BĐT Cauchy)

\(\Leftrightarrow\frac{AB.AC}{AM.AN}\le\frac{9}{4}\Leftrightarrow AM.AN\ge\frac{4.AB.AC}{9}\)

\(\Rightarrow S_{AMN}\ge\frac{4}{9}.S_{ABC}\Leftrightarrow\frac{S_{ABC}}{S_{AMN}}\le\frac{9}{4}\)(đpcm).

Đẳng thức xảy ra <=> \(\frac{AB}{AM}=\frac{AC}{AN}\)<=> MN // BC <=> d // BC.

phạm trang
8 tháng 4 2020 lúc 17:59

1

toánlop5Nhãn
Khách vãng lai đã xóa
phan van nhat linh
16 tháng 4 2020 lúc 14:05

ai fan one piece điểm danh cái

Khách vãng lai đã xóa
Nguyễn Thị Lan Anh
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 5 2022 lúc 21:44

a: Kẻ CH vuông góc với AM

\(S_{AGC}=\dfrac{CH\cdot AG}{2}\)

\(S_{GMC}=\dfrac{CH\cdot MG}{2}\)

mà AG=2MG

nên \(S_{AGC}=2S_{GMC}\)

b: Kẻ GK vuông góc với BC

\(S_{GMB}=\dfrac{BM\cdot GK}{2}\)

\(S_{GMC}=\dfrac{MC\cdot GK}{2}\)

mà BM=CM

nên \(S_{GMB}=S_{GMC}\)

Bùi Tiến Đạt
Xem chi tiết