Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Đăng
Xem chi tiết
Nguoi Viet Nam
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2021 lúc 21:48

a) Ta có: AB,BC,CA tỉ lệ với 4;7;5(gt)

nên AB:BC:CA=4:7:5

hay \(\dfrac{AB}{4}=\dfrac{BC}{7}=\dfrac{CA}{5}\)

Ta có: \(\dfrac{AB}{4}=\dfrac{AC}{5}\)(cmt)

nên \(\dfrac{AB}{AC}=\dfrac{4}{5}\)

Xét ΔABC có 

AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

mà \(\dfrac{AB}{AC}=\dfrac{4}{5}\)(cmt)

nên \(\dfrac{MB}{MC}=\dfrac{4}{5}\)

\(\Leftrightarrow\dfrac{MB}{4}=\dfrac{MC}{5}\)

mà MB+MC=BC(M nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{MB}{4}=\dfrac{MC}{5}=\dfrac{MB+MC}{4+5}=\dfrac{BC}{9}=\dfrac{18}{9}=2\)

Do đó: \(\dfrac{MC}{5}=2\)

hay MC=10(cm)

Vậy: MC=10cm

d) Xét ΔABC có 

CP là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

BN là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)

Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)

Catherine paul
Xem chi tiết
Ngọc Mai Linh
Xem chi tiết
Lê Thị Phương Linh
Xem chi tiết
Thanh Thanh
Xem chi tiết
Phạm Phương Anh
Xem chi tiết
trần xuân quyến
Xem chi tiết
Đào Thị Thùy Dương
Xem chi tiết