Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Chi
Xem chi tiết
nguyễn vy
Xem chi tiết
nợ mẹ ll một thằng ll rể
Xem chi tiết
Nguyễn Bảo Gia Huy
Xem chi tiết
Nguyễn Bảo Gia Huy
24 tháng 10 2019 lúc 21:04

Từ giả thiết 
x^2 - yz = a 
y^2 - zx = b 
z^2 - xy = c 
ta suy ra 
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau); 
và 
x^3 - xyz = ax 
y^3 - xyz = by 
z^3 - xyz = cz. 
Cộng các đẳng thức theo vế, ta được 
x^3 + y^3 + z^3 - 3xyz = ax + by + cz. 
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại 
(x + y + z)(a + b + c) = ax + by + cz. 
Suy ra ax + by + cz chia hết cho a + b + c. 

Khách vãng lai đã xóa
Nguyễn Ngọc Ánh
24 tháng 10 2019 lúc 21:12

bài này dùng chia hết thôi 

Khách vãng lai đã xóa
minh nguyen thi
Xem chi tiết
Mai Thanh Hoàng
Xem chi tiết
Đen đủi mất cái nik
19 tháng 8 2017 lúc 15:19

Ta có

x2-yz=a

y2-zx=b

z2-xy=c

=>x3-xyz=ax

    y3-xyz=by

    z3-xyz=cz

=> x3+y3+z3-3xyz=ax+by+cz

Lại có

x3+y3+z3-3xyz

=(x+y)3-3x2y-3xy2+z3-3xyz

=[(x+y)3+z3]-3xy(x+y+z)

Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:

=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)

=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=(x+y+z)(x2+y2+z2-xy-yz-zx)

( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)

Đen đủi mất cái nik
19 tháng 8 2017 lúc 15:27

ak mình nhầm tẹo srr nha, đến chỗ

(x+y+z)(x2+y2+z2-xy-yz-zx)

Vì x2-yz=a, y2-zx=b, z2- xy=c

=>x2+y2+z2-xy-yz-zx=a+b+c

=>ax+by+cz=(x+y+z)(a+b+c)

=> DPCM

Đen đủi mất cái nik
19 tháng 8 2017 lúc 15:28

srr nhiều

zZz Nguyễn Việt Hà zZz
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Trọng Chiến
7 tháng 3 2021 lúc 14:42

\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)

Hoàng Phúc
Xem chi tiết
Phạm Tuấn Bách
30 tháng 1 2016 lúc 21:30

mình ko biết

Minh Triều
30 tháng 1 2016 lúc 21:30

cách của TĐT là cách nào ko thấy sao bik

Hoàng Phúc
30 tháng 1 2016 lúc 21:33

cách của TĐT: http://olm.vn/hoi-dap/question/390836.html