Chứng tỏ rằng tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
Bài toán vui: - Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3 - Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
Bài toán vui:
- Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
- Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
chứng tỏ rằng tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
Ta thấy : 3 số tự nhiên liên tiếp luôn có 1 số là bội của 3
=> Tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
=> đpcm
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
Hãy chứng tỏ rằng tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
Good lucky!
Gọi 3 số tự nhiên liên tiếp đó là a, a+1, a+2
Ta có tích sau
a.(a+1).(a+2)=a(1+2)=4.3
=> tích của 3 số tự nhiên liên tiếp chia hết cho 3
k mik nha
Gọi 3 số tự nhiên liên tiếp là n ; n + 1 ; n + 2
Xét các giá trị là số tự nhiên
=> có 2 trường hợp
Th1 : n là số lẻ (n = 2k + 1 với k thuộc N)
=> n + n + 1 + n + 2
= 2k + 1 + 2k + 1 + 1 + 2k + 1 + 2
= 6k + (1 + 1 + 1 + 1 + 2)
= 6k + 6
= 3(2k + 2) chia hết cho 3 (1)
Với n là số chẵn (n = 2k với k thuộc N)
=> 2k + 2k + 1 + 2k + 2
= 6k + 3
= 3.(2k + 1) chia hết cho 3 (2)
Từ (1) và (2)
=> Với mọi n thuộc N , 3 số tự nhiên liên tiếp luôn chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là n ; n + 1 ; n + 2
Xét các giá trị là số tự nhiên
=> có 2 trường hợp
Th1 : n là số lẻ (n = 2k + 1 với k thuộc N)
=> n + n + 1 + n + 2
= 2k + 1 + 2k + 1 + 1 + 2k + 1 + 2
= 6k + (1 + 1 + 1 + 1 + 2)
= 6k + 6
= 3(2k + 2) chia hết cho 3 (1)
Với n là số chẵn (n = 2k với k thuộc N)
=> 2k + 2k + 1 + 2k + 2
= 6k + 3
= 3.(2k + 1) chia hết cho 3 (2)
Từ (1) và (2)
=> Với mọi n thuộc N , 3 số tự nhiên liên tiếp luôn chia hết cho 3
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
b) Chứng tỏ rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
a/ Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.
b/
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
a.
b.
từ ý a ta thấy tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 3
mà trong 3 số tự nhiên liên tiếp chắc chắn có ít nhất 1 số chẵn do đó tích 3 số tự nhiên liên tiếp luôn chia hết cho 2
vậy tích 3 số tự nhiên liên tiếp chia hết cho 2 x 3 = 6
a) Câu hỏi của Hoàng Như Anh - Toán lớp 7 - Học toán với OnlineMath
b) chứng tỏ tích của 3 số tự nhiên liên tiếp chia hết cho 6? | Yahoo Hỏi & Đáp
chứng tỏ rằng
a)Tổng của 4 số liên tiếp là một số không chia hết cho 4
b) tích của 3 chữ số tự nhiên liên tiếp luôn chia hết cho 3
a) Gọi 4 số liên tiếp là a, a + 1, a + 2, a+3
Có: a + a + 1 + a + 2 + a + 3 = 4a + 6 chia 4 dư 2
=> đpcm
b) Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2
Có: (a+1)a(a+2) (1). Với a = 3k thì tích (1) chia hết cho 3.
Với a = 3k + 1 thì a + 2 chia hết cho 3 => (1) chia hết cho 3
Với a = 3k = 2 thì a + 1 chia hết cho 3 => (2) chia hết cho 3
Vậy a(a+1)(a+2) luôn chia hết cho 3 => đpcm.
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 2, cho 3
b) Chứng tỏ rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
https://olm.vn/hoi-dap/question/118678.htm Ok nha Giờ bn giúp mk làm bài toán hình học lớ 6 đc k