cho hình vuông ABCD cạnh a. tính ( vecto AB + vecto AD)x(vecto BD + vecto BC)
Cho hình thang vuông ABCD vuông tại A và B, AB=AD=a, BC=2a. Xác định và tính theo a độ dài
1,vectơ AB + vecto BC - vecto CD
2, vecto AB + vecto AD
3, vecto AB + vecto DC - vecto DA
Cho ABCD là hình thang vuông tại A,B (AD là đáy lớn). AD = 2BC và AB = BC = a
a. Tính vecto CD - vecto CB
b. Gọi I trung điểm AD. CM: vecto BI + vecto BC - vecto BA = vecto AD
Cho tứ giác ABCD. Chứng minh rằng nếu |vecto AD + vecto BC| = |vecto AB + vecto DC| thì AC vuông góc với BD
Cho hình chữ nhật ABCD có cạnh AD=2AB=10cm. Tính độ dài vecto AB+ vecto BD
\(\left|\overrightarrow{AB}+\overrightarrow{BD}\right|=\left|\overrightarrow{AD}\right|\)
\(=AD=10\left(cm\right)\)
cho hình thoi ABCD có góc A=60 độ,cạnh a.Gọi O là giao điểm của AC và BD.Tính độ dài vecto AB + vecto AD...vecto BA - vecto BC....vecto OB- vecto DC
có ai biết làm toán hình ko chỉ mình với
BÀI 1 : Cho hình bình hành ABCD tâm O . chứng minh rằng :
a) vecto CO - vecto OB = vecto BA b) vecto AB - vecto BC = vecto DB
c) vecto DA - vecto DB = vecto OD - vecto OC d) vecto DA - vecto DB + vecto DC = vecto O
BÀI 2 : chứng minh rằng 4 điểm A,B,C,D bất kì ta có :
vecto AC + vecto BD = vecto AD + vecto BC
BÀI 3 : cho tứ giác ABCD . Gọi I , J là trung điểm AD , BC ; P là trung điểm IJ.
a) tính vecto AB + vecto DC + vecto BD + vecto CA
b) CMR : vecto AB + vecto CD = vecto AD + vecto CB , vecto AB + vecto DC = 2IJ
c) CMR : vecto PA + vecto PB + vecto PC + vecto PD = vecto 0 , vecto AB + vecto AC + vecto AD = 4AP
MÌNH CẦN GẤP LẮM GIÚP MÌNH NHA
bài 1
a CO-OB=BA
<=.> CO = BA +OB
<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM
b AB-BC=DB
<=> AB=DB+BC
<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM
Cc DA-DB=OD-OC
<=> DA+BD= OD+CO
<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM
d DA-DB+DC=0
VT= DA +BD+DC
= BA+DC
Mà BA=CD(CMT)
=> VT= CD+DC=O
BÀI 2
AC=AB+BC
BD=BA+AD
=> AC+BD= AB+BC+BA+AD=BC+AD (đpcm)
cho hình thoi ABCD cạnh bằng a có tâm O, góc BAD =60 ĐỘ. tính độ dài vec tơ sau.
a) VECTO AB + VECTO AD.
b) VECTO AB - VECTO AC.
c)VECTO AB + VECTO AC.
d) VECTO AD + VECTO CB.
e) VECTO OB - VECTO DC
cho hình vuông abcd có cạnh a. Tính vecto BA+ vecto BD
vecto ba+vecto bd
=3a/4
chúc bạn học tốt
cho hbh ABCD tâm O . vectơ AO= vecto a ; vecto BO = vecto b
a. CMR vecto AB+vecto AD =2 vecto AO
b. tính các vecto : AC;BD;AB;BC;CD;DA theo vecto a ,vecto b
a/ Theo quy tắc 3 điểm: \(\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}\)
\(\overrightarrow{AD}=\overrightarrow{AO}+\overrightarrow{OD}\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{AO}+\overrightarrow{OD}\)
\(\overrightarrow{OD}=-\overrightarrow{OB}\)
\(\Rightarrow\overrightarrow{AD}+\overrightarrow{AB}=2\overrightarrow{AO}\)
b/ \(\overrightarrow{AC}=2\overrightarrow{AO}=2\overrightarrow{a};\overrightarrow{BD}=2\overrightarrow{BO}=2\overrightarrow{b}\)
\(\overrightarrow{BC}=\overrightarrow{BO}+\overrightarrow{OC}=\overrightarrow{BO}+\overrightarrow{AO}=\overrightarrow{a}+\overrightarrow{b}=-\overrightarrow{DA}\)
\(\overrightarrow{AB}=-\overrightarrow{CD}=\overrightarrow{AO}+\overrightarrow{OB}=\overrightarrow{a}-\overrightarrow{b}\)