Xác định dư của phép chia x20 + x11 - x2004 cho x2 - 1
Quy tắc sau đây cho ta biết CAN, CHI của năm X nào đó. Để xác định CAN, ta tìm số dư r trong phép chia X cho 10 và tra vào bảng 1. r 0 1 2 3 4 5 6 7 8 9 CAN Canh Tân Nhâm Quý Giáp Ất Bính Đinh Mậu Kỷ Để xác định CHI, ta tìm số dư s trong phép chia X cho 12 và tra vào bảng 2. s 0 1 2 3 4 5 6 7 8 9 10 11 CHI Thân Dậu Tuất Hợi Tí Sửu Dần Mẹo Thìn Tỵ Ngọ Mùi Ví dụ: năm 2020 có CAN là Canh, CHI là Tí. a. Em hãy sữ dụng quy tắc trên để xác định CAN, CHI của năm 2023? b. Lý Thái Tổ ( Lý Công Uẩn) là vị vua đầu tiên đã mở nên triều đại Lý Phồn Thịnh trong suốt hơn 200 năm. Ông lên ngôi vào năm Kỷ Dậu đầu thế kỉ 11. Em hãy cho biết ông lên ngôi vào năm nào ?
b: 1010
a: Năm nay là năm Quý Mão
Tìm dư của phép chia đa thức f(x) cho (x2 +1) (x-2) biết f(x) (chia x-2) dư 7 và f(x) : (x2 +1) dư 3x+5
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
Không làm phép chia, tìm phần dư trong đa thức f(x) cho đa thức g(x) trong:
f(x)= x+x5+x10+x20 ; g(x) = x2-1
Do đa thức chia có bậc 2
nên đa thức dư là nhị thức bậc nhất
Đặt đa thức dư là \(ax+b\)
Đa thức thương là \(Q_{\left(x\right)}\)
\(\Rightarrow x+x^5+x^{10}+x^{20}=\left(x^2-1\right)Q_{\left(x\right)}+ax+b\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)Q_{\left(x\right)}+ax+b\)
Đẳng thức trên luôn đúng \(\forall x\)
nên lần lượt cho \(x=1;x=-1\)
\(\text{Ta được : }\left\{{}\begin{matrix}a+b=4\\b-a=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{4-0}{2}\\b=\dfrac{4+0}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\)
\(\Rightarrow ax+b=2x+2\)
Vậy số dư trong phép chia \(f_{\left(x\right)};g_{\left(x\right)}\)
là \(2x+2\)
Xác định số dư của phép chia đa thức x^16 + x^5 - x^1995 cho đa thức x^2-1
các câu giúp mình với
nếu mình học lớp 8 rồi thì mình giải giúp cho bạn
Xác định số dư của phép chia đa thức x^16 + x^5 - x^1995 cho đa thức x^2-1
các câu giúp mình với
mk chịu
@@
xác định số dư của phép chia số A cho 2 biết A=m2 cộng m cộng 3(n thuộc N)
Để xác định số dư của phép chia số A cho 2, ta cần biết giá trị của A. Theo đề bài, A = m^2 + m + 3n, với m là một số nguyên và n là một số tự nhiên. Để xác định số dư của A khi chia cho 2, ta có thể xét các trường hợp: 1. Nếu m là số chẵn, thì m^2 cũng là số chẵn. Khi cộng thêm m và 3n, tổng này vẫn là số chẵn. Do đó, số dư của A khi chia cho 2 là 0. 2. Nếu m là số lẻ, thì m^2 cũng là số lẻ. Khi cộng thêm m và 3n, tổng này có thể là số chẵn hoặc số lẻ tùy thuộc vào giá trị của n. Do đó, số dư của A khi chia cho 2 có thể là 0 hoặc 1. Vậy, số dư của phép chia số A cho 2 có thể là 0 hoặc 1, tùy thuộc vào giá trị của m và n.
Để xác định số dư của phép chia số A cho 2, ta cần biết giá trị của A. Theo đề bài, A = m^2 + m + 3n, với m là một số nguyên và n là một số tự nhiên. Để xác định số dư của A khi chia cho 2, ta có thể xét các trường hợp: 1. Nếu m là số chẵn, thì m^2 cũng là số chẵn. Khi cộng thêm m và 3n, tổng này vẫn là số chẵn. Do đó, số dư của A khi chia cho 2 là 0. 2. Nếu m là số lẻ, thì m^2 cũng là số lẻ. Khi cộng thêm m và 3n, tổng này có thể là số chẵn hoặc số lẻ tùy thuộc vào giá trị của n. Do đó, số dư của A khi chia cho 2 có thể là 0 hoặc 1. Vậy, số dư của phép chia số A cho 2 có thể là 0 hoặc 1, tùy thuộc vào giá trị của m và n.
Xác định số hữu tỉ a, b sao cho:
a) 2x2 + ax - 4 chia hết cho x + 4
b) x4 - 3x3 + 3x2 + ax + b chia hết cho x2 - 3x - 4
c) 3x2 + ax + 27 chia cho x + 5 thì dư 27
d) x3 + ax + b chia cho x + 1 thi dư 7, chia cho x - 3 thì dư 5.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
xác định dư của phép chia đa thức x19 + x5 - x2017 cho x2 - 1
\(x^{19}+x^5-x^{2017}=\left(x^{19}-x\right)+\left(x^5-x\right)-\left(x^{2017}-x\right)+x\)
\(=x\left[\left(x^2\right)^9-1\right]+x\left[\left(x^2\right)^2-1\right]-x\left[\left(x^2\right)^{1008}-1\right]+x\)
\(=x\left(x^2-1\right).A_{\left(x\right)}+x\left(x^2-1\right)B_{\left(x\right)}-x\left(x^2-1\right)C_{\left(x\right)}+x\)
\(=x\left(x^2-1\right)\left(A_{\left(x\right)}+B_{\left(x\right)}+C_{\left(x\right)}\right)+x\)
Vậy số dư là x
Phần dư của phép chia đa thức x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 cho đa thức x + 1 là
A. 3
B. 2
C. 0
D. 1
Ta có đa thức x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số
Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có
x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 = Q(x)(x + 1) + r (1)
Thay x = -1 vào (1) ta được
( ( - 1 ) 2 + 3 . ( - 1 ) + 2 ) 5 + ( ( - 1 ) 2 – 4 ( - 1 ) – 4 ) 5 – 1 = Q(x).(-1 + 1) + r
r = 0 5 + 1 5 – 1 ó r = 0
vậy phần dư của phép chia là r = 0.
đáp án cần chọn là: C
Phần dư của phép chia đa thức x 4 – 2 x 3 + x 2 – 3x + 1 cho đa thức x 2 + 1 có hệ số tự do là
A. 2
B. 3
C. 1
D. 4
Đa thức dư là – x + 1 có hệ số tự do là 1.
Đáp án cần chọn là: C