Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Ngọc Minh
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 6 2016 lúc 15:06

Từ a = b + 1 ta suy ra \(a-b=1\)

Do đó : \(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^8+b^8\right)...\left(a^{32}+b^{32}\right)=\left(a^2-b^2\right)\left(a^2+b^2\right)...\left(a^{32}+b^{32}\right)=\left(a^4-b^4\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)

Tiếp tục thu gọn theo cách trên ta được đpcm.

Phúc Nguyễn
Xem chi tiết
Hoàng nhật Giang
Xem chi tiết
Đỗ Thị Hải Nguyệt
Xem chi tiết
Lã Tiệp Quyên
10 tháng 10 2018 lúc 11:35

Cần chứng minh với b=a-1 thì (a+b)(a^2+b^2)...(a^(2^p)+b^(2^p) = a^(2^(p+1)) - b^(2^(p+1))    (1)

Với p=0 thì a+b = a^2-b^2

hay 2a-1 = a^2 - (a-1)^2

hay 2a-1 = a^2 - (a^2 - 2a - 1)

hay 2a-1 = 2a -1

Điều này đúng nên (1) đúng với p = 0

Dùng quy nạp, giả thiết (1) đúng với p, chứng minh đúng với p+1.

Hay cần chứng minh (a^(2^(p+1)) - b^(2^(p+1))).(a^(2^(p+1)) + b^(2^(p+1))) = a^(2^(p+2)) - b^(2^(p+2))    (2)

Đặt a^(2^(p+1)) = A, b^(2^(p+1)) = B thì

(2) tương đương với (A - B).(A + B) = A^2 - B^2

hay A^2 - B^2 = A^2 - B^2 (đúng)

Vậy (2) đúng.

Theo quy nạp ta có điều phải chứng minh.

Đào
Xem chi tiết
Đỗ Thị Hải Nguyệt
Xem chi tiết
nguyễn minh anh
10 tháng 10 2018 lúc 11:56

Có: \(b=a-1\Rightarrow a-b=1\)

\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)

\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)...\left(a^{32}+b^{32}\right)\)

\(=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\)

Võ Nguyên Khoa
Xem chi tiết
ミ★Linh Cute ( Team mê T...
21 tháng 7 2021 lúc 20:38

Cute thế.

Khách vãng lai đã xóa
Xyz OLM
21 tháng 7 2021 lúc 20:41

a) Ta có x + y + z = 0

=> x + y = -z

=> (x + y)3 = (-z)3

=> x3 + y3 + 3xy(x + y) = -z3

=> x3 + y3 + z3 = -3xy(x + y) 

=> x3 + y3 + z3 = -3xy(-z)

=> x3 + y3 + z3 = 3xyz (đpcm) 

Khách vãng lai đã xóa
Xyz OLM
21 tháng 7 2021 lúc 20:44

Ta có b = a - 1 => a - b = 1

Khi đó (a + b)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16)(a32  + b32)

= 1(a + b)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16)(a32  + b32)

= (a - b)(a + b)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16)(a32  + b32)

= (a2 - b2)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16)(a32  + b32)

= (a4 - b4)(a4 + b4)(a8 + b8)(a16 + b16)(a32  + b32)

= (a8 - b8)(a8 + b8)(a16 + b16)(a32  + b32)

= (a16 - b16) (a16 + b16)(a32  + b32)

= (a32 - b32)(a32 + b32

= a64 - b64 (đpcm) 

Khách vãng lai đã xóa
nguyễn văn du
Xem chi tiết
TítTồ
3 tháng 8 2019 lúc 9:20

Từ đầu bài 

=> 1.\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\) \(+...+\left(a^{32}+b^{32}\right)\)\(a^{64}-b^{64}\)

=> \(\left(a-b\right)\left(a+b\right)+...+\left(a^{32}+b^{32}\right)\)\(a^{64}+b^{64}\)

=> \(\left(a^2-b^2\right)\left(a^2+b^2\right)+...+\left(a^{32}+b^{32}\right)\)= a^64 + b^64

tương tự sẽ ra kết quả cuối là \(\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)=a^{64}-b^{64}\left(đpcm\right)\)

Nguyễn Lê Việt ANh
Xem chi tiết
Hàn Vũ
29 tháng 8 2017 lúc 12:43

Có a = b+1

=> a - b =1

=> (a-b)(a+b)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = (a-b)(a^64-b^64)

=> (a^2-b^2)(a^2+b^2)(a^4+b^4)...(a^32+b^32) = 1 . (a^64 - b^64)

=> (a^4-b^4)(a^4+b^4)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64

=> (a^8-b^8)(a^8+b^8)(a^16+b^16)(a^32+b^32) = a^64 - b^64

=> (a^16-b^16)(a^16+b^16)(a^32+b^32) = a^64 - b^64

=> (a^32-b^32)(a^32+b^32) = a^64 - b^64

=> a^64-b^64 = a^64 - b^64

=> đpcm