Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hạnh Lương
Xem chi tiết
Anh Minzu
Xem chi tiết
Không Tên
21 tháng 7 2018 lúc 21:51

bài của   Never_NNL   sai nhé:

  \(x+y=m+n\)   \(\Rightarrow\)\(n=x+y-m\)

Ta có:    \(A=x^2+y^2+m^2+n^2\)

\(=x^2+y^2+m^2+\left(x+y-m\right)^2\)

\(=2x^2+2y^2+2m^2+2xy-2mx-2my\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2mx+m^2\right)+\left(y^2-2my+m^2\right)\)

\(=\left(x+y\right)^2+\left(x-m\right)^2+\left(y-m\right)^2\)

Vậy A là tổng của 3 số chính phương

Never_NNL
21 tháng 7 2018 lúc 21:40

x + y = m + n

m = x + y - n

x^2 + y^2 + ( x + y - n )^2 + n^2 

= x^2 + y^2 + ( x^2 + xy- xn ) + ( xy + y^2 - ny ) - [ ( - xn ) + ( - ny ) + n^2 ] + n^2 

= x^2 + y^2 + x^2 + xy - xn + xy + y^2 - ny + xn + ny - n^2 + n^2 

= 2x^2 + 2y^2 + 2xy 

= x^2 + y^2 + ( x^2 + y^2 + 2xy )

= x^2 + y^2 + ( x + y )^2 ( dpcm )

Anh Minzu
22 tháng 7 2018 lúc 9:12

cảm ơn 2 bạn nha

Trần Hữu Đạt
Xem chi tiết
Thắng Nguyễn
13 tháng 5 2016 lúc 18:12

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

l҉o҉n҉g҉ d҉z҉
13 tháng 5 2016 lúc 18:19

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

nguyễn danh bảo
Xem chi tiết
Nguyễn Bích Ngọc
Xem chi tiết
Minh Hiếu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:31

2.

a.

\(x^2+3x=k^2\)

\(\Leftrightarrow4x^2+12x=4k^2\)

\(\Leftrightarrow4x^2+12x+9=4k^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)

\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)

2x+3-2k-9-3-1139
2x+3+2k-1-3-9931
x-4-3-4101
 nhậnnhậnnhậnnhậnnhậnnhận

Vậy \(x=\left\{-4;-3;0;1\right\}\)

b. Tương tự

\(x^2+x+6=k^2\)

\(\Leftrightarrow4x^2+4x+24=4k^2\)

\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)

\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)

Em tự lập bảng tương tự câu trên

Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:24

1.

\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)

\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)

\(\Leftrightarrow-64y^2+16y+16\ge0\)

\(\Leftrightarrow\left(8y-1\right)^2\le17\)

\(\Rightarrow\left(8y-1\right)^2\le16\)

\(\Rightarrow-4\le8y-1\le4\)

\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)

\(\Rightarrow y=0\)

Thế vào pt ban đầu:

\(\Rightarrow x^2=1\Rightarrow x=\pm1\)

Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)

Phạm Gia Khiêm
Xem chi tiết
Phạm Gia Khiêm
Xem chi tiết
Vũ
Xem chi tiết