cho a>1,b>1.chung minh \(a\sqrt{b-1}+b\sqrt{a-1}< ab\)
cho cac so a,b,c duong thoa man ab+bc+ca=1 chung minh : \(p=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
cho a,b, c > hoac = 0 va a+b+c=1.chung minh
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}>3.5\)
2 cho a,b,c >0 . chung minh
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>hoac=3\)
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
cho ca so a,b,c duong thoa man ab+bc+ca =1 chung minh \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{1}{4}\)
1/ Cho a,b>0 , thỏa mãn ab = 1. Chứng minh rằng:
\(\dfrac{a}{\sqrt{b+2}}+\dfrac{b}{\sqrt{a+2}}+\dfrac{1}{\sqrt{a+b+ab}}\ge\sqrt{3}\)
2/ Cho a>0. Chứng minh rằng:
a+\(\dfrac{1}{a}\ge\sqrt{\dfrac{1}{a^2+1}}+\sqrt{1+\dfrac{1}{a^2+1}}\)
3/ Cho a, b>0. Chứng minh rằng:
2(a+b)\(\le1+\sqrt{1+4\left(a^3+b^3\right)}\)
Bài 10.
a) Cho a≥1; b≥1
chứng minh : a \(\sqrt{b-1}\) + b\(\sqrt{a-1}\) ≤ ab
Áp dụng bất đẳng thức Cauchy:
\(a\sqrt{b-1}=a\sqrt{1\left(b-1\right)}\le a\dfrac{1+b-1}{2}=\dfrac{ab}{2}\left(1\right)\)
CMTT: \(b\sqrt{a-1}\le\dfrac{ab}{2}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\left(đpcm\right)\)
\(ĐTXR\Leftrightarrow a=b=1\)
a,b,c>0 va a+b+c=1 Chung minh \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)
<=> √a+1+√b+1+√c+1< √12.25
<=>a+1+b+1+c+1< 12.25
<=>4<12.25(dpcm)
hay √2 <3.5
Áp dụng BĐT Bunyakovsky, ta có:
\(\left(a+1+b+1+c+1\right)3\ge\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\sqrt{12}< 3,5\)
\(B=\frac{1+\sqrt{1-a}}{1-a+\sqrt{1-a}}+\frac{1-\sqrt{1+a}}{1+a-\sqrt{1+a}}+\frac{1}{\sqrt{1+a}}\)
rut gon B
chung minh B luon luon duong vs moi a
bạn tự ghi dk nha
\(B=\frac{1+\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1-a}+1\right)}+\frac{1-\sqrt{1+a}}{\sqrt{1+a}\left(\sqrt{1+a}-1\right)}+\frac{1}{\sqrt{1+a}}\)
\(B=\frac{1}{\sqrt{a-1}}-\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{1+a}}\)
\(B=\frac{1}{\sqrt{a-1}}\)
vì \(\sqrt{a-1}>0\)không có dấu = vì mẫu khác 0
\(\Rightarrow\frac{1}{\sqrt{a-1}}>0\)
đpcm
\(P=\left(\frac{\sqrt{a}}{\sqrt{ab}-b}+\frac{2\sqrt{a}-\sqrt{b}}{\sqrt{ab}-a}\right):\left(\frac{1}{b\sqrt{a}}-\frac{1}{a\sqrt{b}}\right)\)
1)chung minh \(P=\sqrt{ab}\)
2) tinh gia tri cua P khi \(a=3-\sqrt{5}\) va b=0,5
3) ting gia tri lon nhat cua P neu \(a^2+4b^2=8\)
Chứng minh các đẳng thức sau:
a) \(\left(1-a^2\right):\left(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right)+1=\frac{2}{1-a}\)
b) \(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)=\sqrt{b}-\sqrt{a}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)=\frac{\sqrt{a}}{a}\)