Tìm x, y,z biết xy+1=z với x,y,z là số nguyên tố
tìm 3 số nguyên tố (x,y,z) thỏa mãn (x+y)(xy+1)=2^z
Tìm số nguyên tố x,y,z thỏa mãn:
xy +1 =z
Vì \(x^y+1=z\Rightarrow z>x,y\Rightarrow z\) lẻ
Xét \(x\) lẻ \(\Rightarrow x^y+1\) chẵn \(\Rightarrow\) vô lý \(\Rightarrow x\) chẵn \(\Rightarrow x=2\Rightarrow2^y+1=z\)
Xét \(y=2\Rightarrow z=5\Rightarrow\) thỏa
Xét \(y>2\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\Rightarrow2^{2k+1}+1=z\Rightarrow4^k.2+1=z\)
Vì 4 chia 3 dư 1 \(\Rightarrow4^k\) cũng chia 3 dư 1
\(\Rightarrow4^k.2+1⋮3\Rightarrow z=3\Rightarrow2^y=2\Rightarrow y=1\) (vô lý)
Vậy bộ (x,y,z) thỏa là (2,2,5)
Ta có x, y nguyên tố và xy + 1 = z
=> z > 3
Mà z là số nguyên tố
=> z lẻ => xy chẵn => x = 2
Xét y = 2 => z = 5 (thỏa mãn)
Xét y > 2:
Đặt y = 2k +1 (\(k\in N\) *)
=> 22k+1 + 1 = z
=> 2.4k + 1 = z
Có \(4^k\equiv1\left(mod3\right)\) => 2.4k + 1 chia hết cho 3
=> z chia hết cho 3 (loại)
KL x = 2, y = 2, z = 5
Tìm các số nguyên tố x, y, z thoả món xy + 1 = z
Vì x, y là các số nguyên tố nên x ≥ 2 ; y ≥ 2 ⇒ z ≥ 5 vậy z là số nguyên tố lẽ
x y + 1 = z ⇒ x y = z - 1
Suy ra xy là số chẵn vậy x = 2 khi đó z = 2y + 1
Nếu y lẽ thì 2 y ≡ 2 (mod 3)
2 y + 1 ⋮ 3 ⇒ z ⋮ 3 (vụ lớ Vì z là nguyên tố )
Vậy y chẵn , suy ra y = z
z = 22 + 1 = 5
Vậy các số nguyên tố cần Tìm là x = y = z , z = 5
Tìm ba số nguyên tố liên tiếp x, y, z (với x < y < z) sao cho số A = x^2 + y^2 + z^2 là 1 số nguyên tố
Nếu các số nguyên tố p, q, r đều khác 3 thì p, q, r chia 3 dư \(\pm1\)nên \(p^2,q^2,r^2\)chia cho 3 dư đều dư 1
Khi đó, \(p^2+q^2+r^2⋮3\), mà \(p^2+q^2+r^2>3\)nên \(p^2+q^2+r^2\)không là số nguyên tố
Do đó trong ba p, q, r số phải có là 3
\(\left(p;q;r\right)=\left(2;3;5\right)\Rightarrow p^2+q^2+r^2=38\left(l\right)\)
\(\left(p;q;r\right)=\left(3;5;7\right)\Rightarrow p^2+q^2+r^2=83\left(TM\right)\)
Vậy...
Câu 1: Tìm số nguyên x để biểu thức sau là số nguyên: A=\(\frac{3x-2}{x+3}\)
Câu 2: Tìm x;y biết:
a) x-y=xy=x:y(y khác 0)
b) x(x+y+z)=3; y(x+y+z)=9; z(x+y+z)=4
GIÚP MÌNH VỚI! THANK!!!!!!!!!!!!
cho x,y,z là các số nguyên dương với \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm max : \(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+xz}+\dfrac{z}{z^2+xy}\)
\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
Tìm các số nguyên tố x,y,z thỏa mãn:
(x+y)(xy+1)=2^y
Tìm nghiệm nguyên dương của phương trình: x(x+1)+y(y+1)=z(z+1) với x,y là các số nguyên tố.
Cho x, y, z là số nguyên biết x + y +z = 1
Tìm Min: A = xy/x + yz/x + xz/y
ko tin bạn đọc lại đề xem,nó vòng lặp sai mà,cái đầu tiên đó