Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Văn Tuấn Phương
Xem chi tiết
Ng Thu Trà
Xem chi tiết
An Thy
24 tháng 6 2021 lúc 17:09

Vì \(x^y+1=z\Rightarrow z>x,y\Rightarrow z\) lẻ

Xét \(x\) lẻ \(\Rightarrow x^y+1\) chẵn \(\Rightarrow\) vô lý \(\Rightarrow x\) chẵn \(\Rightarrow x=2\Rightarrow2^y+1=z\)

Xét \(y=2\Rightarrow z=5\Rightarrow\) thỏa

Xét \(y>2\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\Rightarrow2^{2k+1}+1=z\Rightarrow4^k.2+1=z\)

Vì 4 chia 3 dư 1 \(\Rightarrow4^k\) cũng chia 3 dư 1

\(\Rightarrow4^k.2+1⋮3\Rightarrow z=3\Rightarrow2^y=2\Rightarrow y=1\) (vô lý)

Vậy bộ (x,y,z) thỏa là (2,2,5)

 

๖ۣۜDũ๖ۣۜN๖ۣۜG
24 tháng 6 2021 lúc 17:07

Ta có x, y nguyên tố và xy + 1 = z

=> z > 3

Mà z là số nguyên tố

=> z lẻ => xy chẵn => x = 2

Xét y = 2 => z = 5 (thỏa mãn)

Xét y > 2:

Đặt y = 2k +1 (\(k\in N\) *)

=> 22k+1 + 1 = z

=> 2.4k + 1 = z

Có \(4^k\equiv1\left(mod3\right)\) => 2.4k + 1 chia hết cho 3

=> z chia hết cho 3 (loại)

KL x = 2, y = 2, z = 5
 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 1 2017 lúc 13:47

Vì x, y là các số nguyên tố nên x   ≥ 2 ;   y ≥ 2   ⇒ z ≥ 5   vậy z là số nguyên tố lẽ

x y   + 1   =   z ⇒   x y =   z - 1

Suy ra xy là số chẵn vậy x = 2 khi đó  z = 2y + 1

Nếu y lẽ thì 2 y ≡ 2  (mod 3)

2 y + 1   ⋮   3 ⇒ z ⋮ 3 (vụ lớ Vì z là nguyên tố )

Vậy y chẵn , suy ra y = z

z = 22 + 1 = 5

Vậy các số nguyên tố cần Tìm là x = y = z , z = 5

Ngô Hạnh Dung
Xem chi tiết
Phùng Gia Bảo
24 tháng 3 2020 lúc 19:21

Nếu các số nguyên tố p, q, r đều khác 3 thì p, q, r chia 3 dư \(\pm1\)nên \(p^2,q^2,r^2\)chia cho 3 dư đều dư 1

Khi đó, \(p^2+q^2+r^2⋮3\), mà \(p^2+q^2+r^2>3\)nên \(p^2+q^2+r^2\)không là số nguyên tố

Do đó trong ba p, q, r số phải có là 3

\(\left(p;q;r\right)=\left(2;3;5\right)\Rightarrow p^2+q^2+r^2=38\left(l\right)\)

\(\left(p;q;r\right)=\left(3;5;7\right)\Rightarrow p^2+q^2+r^2=83\left(TM\right)\)

Vậy...

Khách vãng lai đã xóa
Giang Nguyễn
Xem chi tiết
whisky
27 tháng 8 2016 lúc 9:18

khó quá bạn ơi

khoa
Xem chi tiết
Trần Minh Hoàng
12 tháng 3 2021 lúc 21:05

\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.

Nguyễn Nga
Xem chi tiết
king
Xem chi tiết
Thu Hà 03
Xem chi tiết
Trần Hữu Ngọc Minh
9 tháng 10 2017 lúc 22:55

đề sai

Trần Hữu Ngọc Minh
9 tháng 10 2017 lúc 23:40

ko tin bạn đọc lại đề xem,nó vòng lặp sai mà,cái đầu tiên đó

Gia cat luong
11 tháng 10 2017 lúc 20:12

minA=0