Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lyzimi
Xem chi tiết
Thắng Nguyễn
29 tháng 1 2017 lúc 17:58

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\ge\left(a+b\right)^2a^2b^2\)\(\forall a,b>0\)

\(\Leftrightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Leftrightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)

Tương tự ta có: \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\le\frac{b}{a+b+c}\)

Cộng theo vế ta có: \(VT\le\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Nguyễn Thiên Kim
30 tháng 1 2017 lúc 20:19

mk có cách giải khác Lyzimi, Thắng Nguyễn và Minh Triều xem thử nha :)

\(\forall x;y>0\) ta dễ dàng chứng minh được \(x^5+y^5\ge xy\left(x^3+y^3\right)\) và \(x^3+y^3\ge xy\left(x+y\right)\)

Đẳng thức xảy ra \(\Leftrightarrow\)\(x=y\)

(cái này để chứng minh bn thử biến đổi tương đương xem sao :)

Do đó \(a^5+b^5+ab\ge ab\left(a^3+b^3+1\right)\)

\(\Rightarrow\)\(\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left(a^3+b^3+1\right)}=\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)(1)

Chứng minh tương tự \(\frac{bc}{b^5+c^5+bc}\le\frac{1}{bc\left(a+b+c\right)}\) (2) và \(\frac{ca}{c^5+a^5+ca}\le\frac{1}{ca\left(a+b+c\right)}\) (3)

Cộng (1), (2) và (3) ta có \(VT\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}=1\)

Đẳng thức xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

Rin Kagamine
3 tháng 2 2017 lúc 13:03

mình hông hiểu ???

Trần Hữu Ngọc Minh
Xem chi tiết
Lyzimi
Xem chi tiết
Minh Triều
23 tháng 1 2017 lúc 22:19

\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)

=\(\frac{1}{abc}.\left(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\right)\)

=\(\frac{1}{a^5c+b^5c+abc}+\frac{1}{b^5a+c^5a+abc}+\frac{1}{c^5b+a^5b+abc}\)

\(\le\)\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\)

Ta có : a3+b3=(a+b)(a2-ab+b2)\(\ge\)ab(a+b) (cosi)

Tương tự ta được:

b3+c3\(\ge bc\left(b+c\right)\)

c3+a3\(\ge ca\left(c+a\right)\)

Như vậy \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)

\(\le\)\(\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\)

=\(\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

=\(\frac{1}{a+b+c}.\left(\frac{a+b+c}{ab+bc+ca}\right)=\frac{1}{ab+bc+ca}\le1\)

ngonhuminh
24 tháng 1 2017 lúc 7:37

​mình tò mò muốn biết BĐT trên đẳng thức khi nào nhỉ

ngonhuminh
24 tháng 1 2017 lúc 9:30

Không phải chới đâu BĐT cuối của bạn không bao giờ =1 được

\(\frac{1}{ab+bc+ac}\le\frac{1}{3}\) Đẳng thức khi a=b=c=1

p/s: đoạn trước bạn viết loạn lên chưa cần xem

TS Minh Quan
Xem chi tiết
Đình Sang Bùi
16 tháng 8 2018 lúc 20:57

Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án

Trần Đức Thắng
Xem chi tiết
Nguyễn Thị Huỳnh Như
26 tháng 12 2015 lúc 21:59

Ta có a+ b5 \(\ge\) a3b+ a2b= a2b(a+b)

\(\Leftrightarrow\)a+ b+ ab \(\ge\) a2b2(a+b) + ab= ab[ab(a+b)+abc] = ab[ab(a+b+c)] = ab*\(\frac{abc\left(a+b+c\right)}{c}\) =  ab* \(\frac{a+b+c}{c}\)  (vì abc=1)

\(\Leftrightarrow\) \(\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\cdot\frac{a+b+c}{c}}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)  (1)

Tương tự, ta có \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c}\)(2)

\(\frac{ca}{a^5+c^5+ca}\le\frac{b}{a+b+c}\)(3)

Ta cộng từng vế (1), (2), (3), ta được

\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{a^5+c^5+ca}\le\frac{a+b+c}{a+b+c}=1\)

Vây ta được điều phài chứng minh

 

 

Tùng Trần Sơn
Xem chi tiết
Leonah
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 21:27

\(a^5+b^2+ab+6\ge3a^2b+6\)

\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)

\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)

\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)

\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

\(\Rightarrow P\le\sqrt{1}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

shitbo
Xem chi tiết
Trần Việt Anh
9 tháng 2 2019 lúc 17:16

Đề cho x y z tự dưng nhảy sang a,b,c là sao :)))

Nguyễn Khánh Linh
9 tháng 2 2019 lúc 17:24

 x^5+y^5≥x^2.y^2(x+y)

x^5+y^5≥x^2.y^2(x+y)

ta có: x^5+y^5=(x+y)(x^4−x^3y+x^2y^2−x.y^3+y^4)=(x+y)((x−y)^2(x^2−xy+y^2)+x^2y^2)x^5+y^5=(x+y)(x^4−x^3y+x^2y^2−xy^3+y^4)=(x+y)((x−y)^2(x^2−xy+y^2)+x^2y^2). Vì (x−y)^2(x2−xy+y2)≥0(x−y)2(x^2−xy+y^2)≥0 nên ((x−y)^2(x^2−xy+y^2)+x^2y^2)≥x^2y^2((x−y)2(x2−xy+y2)+x2y2)≥x2y2 nên ta có đpcm.

trở lại bài toán:

aba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+caba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+c

Tương tự với 2 cái còn lại rồi cộng lại được đpcm. 

x+y5≥x2.y2(x+y)x5+y5≥x2.y2(x+y)

thật vậy, ta có: x5+y5=(x+y)(x4−x3y+x2y2−xy3+y4)=(x+y)((x−y)2(x2−xy+y2)+x2y2)x5+y5=(x+y)(x4−x3y+x2y2−xy3+y4)=(x+y)((x−y)2(x2−xy+y2)+x2y2). Vì (x−y)2(x2−xy+y2)≥0(x−y)2(x2−xy+y2)≥0 nên ((x−y)2(x2−xy+y2)+x2y2)≥x2y2((x−y)2(x2−xy+y2)+x2y2)≥x2y2 nên ta có đpcm.

trở lại bài toán:

aba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+caba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+c

Tương tự với 2 cái còn lại rồi cộng lại được đpcm.

Trần Việt Anh
9 tháng 2 2019 lúc 17:26

Nguyễn Khánh Linh copy ngu thế ? :))