Q=\(\frac{2}{x-1}\)đk;x>0 ;x\(\ne\)1(phương trình này đã rút gọn r )
tìm số nguyên x lớn nhất để Q có gt là số nguyên.
Rút gọn:
a, A = \(\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\) (đk: x ≥ 0 và x ≠ 36)
b, B = \(\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\) (đk: x ≥ 0 và x ≠ 9)
c, C = \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\) (đk: a > 0, b > 0 và a ≠ b)
d, D = \(\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\) (đk: a ≥ 0, a ≠ 2, a ≠ 4)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
Tìm đk và rút gọn Q=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}_{ }\right)\):\(\frac{\sqrt{x}-1}{2}\)
ĐKXĐ: ...
\(Q=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{2}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{1-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{2}{\sqrt{x}-1}=\frac{-2}{1-x\sqrt{x}}\)
1.Cho a,b,c là 3 số dương. Chứng minh :
a) \(\frac{a+1}{b+2c+3}+\frac{b+1}{c+2a+3}+\frac{c+1}{a+2b+3}\ge1\)
b) \(\sqrt{\frac{a}{7a^2+4}}+\sqrt{\frac{a}{7b^2+4}}+\sqrt{\frac{a}{7c^2+4}}\le27\left(\frac{1}{42a+29}+\frac{1}{42b+29}+\frac{1}{42c+29}\right)\)
c) \(c^2-a^2-b^2\le4\left(ĐK:2\le c\le3;\frac{b}{2}+\frac{3}{c}\ge2;a+\frac{b}{2}+\frac{c}{3}\ge3\right)\)
2. Chứng minh :
a) \(2x+\sqrt{12-2x^2}\le6\left(ĐK:6-x^2\ge0\right)\)
b) \(\sqrt{1-2y-y^2}\le y+3\left(ĐK:1-2y-y^2\ge0\right)\)
c) \(\sqrt{5-x^2}+\sqrt{5-\frac{1}{x^2}}+x+\frac{1}{x}\ge6\left(ĐK:5-x^2\ge0;5-\frac{1}{x^2}\ge0\right)\)
Tịnh tách các bài ra nhé.
cho biểu thức Q=\(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}+\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\) ĐK x>0
a)Rút gọn Q
b)Tìm Max Q
Q=\(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}+\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\) điều kiện x>=0
=\(\frac{x-1+x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
ta thấy cả tử và mẫu đề >=0=> Q>=0
dấu = xảy ra khi x=0
=> Q=0 khi x=0
rút gọn: \(\frac{\sqrt{x}}{\sqrt{x-1}}+\frac{\sqrt{x}}{\sqrt{x}-1}:\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}+x}\right)\)
Đk: x \(\ge\)0 , x\(\ne1\)
rút gọn biểu thức với điều kiện đã cho của x rồi tính giá trị của nó:
a)\(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}+\frac{x^2-1}{x-3}}ĐK:\left(x< 3;\right)tạix=0,5\)
b)\(4x-\sqrt{8}+\frac{\sqrt{X^3+2X^2}}{\sqrt{X+2}}ĐK:\left(X.-2\right)TẠIX=-\sqrt{2}\)
b) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
\(=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}\)
\(=4x-\sqrt{8}+\frac{x\left(x+2\right)}{x+2}\)
\(=4x-\sqrt{8}+x\)
\(=5x-\sqrt{8}\)
Với \(x=-\sqrt{2}\) ta có:
\(5x-\sqrt{8}=5\cdot\left(-\sqrt{2}\right)-\sqrt{4\cdot2}=-5\sqrt{2}-2\sqrt{2}=-7\sqrt{2}\)
rút gịn B
\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{x-\sqrt{x}}\) (đk: x>0;x khác 1
\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
Cho số thực x thỏa mãn ĐK 0=<x=<1 Tìm giá trị lớn nhất của bth \(\frac{x^2}{2-x^2}+\frac{1-x^2}{1+x^2}\)
Câu hỏi của cai j vay - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
cho số thực x thỏa mãn đk \(0\le x\le1\)
tìm GTNN, GTLN của bt P=\(\frac{x^2}{2-x^2}+\frac{1-x^2}{1+x^2}\)
Đặt \(x^2=p\left(0\le p\le1\right)\)
Ta có : \(P=\frac{p}{2-p}+\frac{1-p}{1+p}=-2+\frac{2}{2-p}+\frac{2}{1+p}\)
\(=-2+2\left(\frac{1}{2-p}+\frac{1}{1+p}\right)=2\left(\frac{3}{\left(2-p\right)\left(1+p\right)}-1\right)\)
\(=2\left(\frac{3}{2+p\left(1-p\right)}-1\right)\)
Do \(0\le p\le1\Rightarrow p\left(1-p\right)\ge0\) \(\Rightarrow P\le2\left(\frac{3}{2}-1\right)=1\) có MAX là 1
Ta có : \(p\left(1-p\right)\le\frac{\left(p+1-p\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P\ge2\left(\frac{3}{2+\frac{1}{4}}-1\right)=\frac{2}{3}\)Có MIN là \(\frac{2}{3}\)
Giúp mình tìm đk có nghĩa bài này nha:
\(A=\frac{3}{\sqrt{x}+3}-\frac{1}{1-\sqrt{x}}-\frac{2}{x+2\sqrt{x}-3}\)