Cho A= 3 + 3^2 + 3^3 + .... + 3^ 2016. Chứng minh rằng A chia hết cho 60
Chứng minh rằng
a) A = 3 + 32 + 33 + ...+39 + 310 . Chứng minh A chia hết cho 4
b) B = 22020 - 22016 . Chứng minh B chia hết cho 15
c) C = 2 + 22 + 23 + ... + 260 . Chứng minh C + 7
d) Chứng tỏ rằng 102016 + 8 + 9
\(a,\)Ta có:
\(A=3+3^2+3^3+...+3^{10}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)
\(=4\left(3+3^3+...+3^9\right)⋮4\)
\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)
\(\Rightarrow\)ĐPCM
C,GHÉP BA SỐ LIÊN TIẾP LẠI RỒI LẤY SỐ HẠNG ĐẦU TIÊN RA LÀM CHUNG VÀ TỒNG TRONG NGOẶC ĐƯỢC 7.
a)cho A=2+2^2+2^3+...+2^60.chứng minh rằng A chia hết cho 3,7 và 15
b)cho B=3+3^3+3^4+...+3^1991.chứng minh rằng B chia hết cho 13 và 41
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)
\(=3\times91+3^7\times91+...+3^{1987}\times91\)
\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)
\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)
Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.
b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)
\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)
\(=3\times820+...+3^{1985}\times820\)
\(=3\times20\times41+...+3^{1985}\times20\times41\)
\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)
Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.
Cho A = 2+2^2+2^3+...+2^60 . chứng minh rằng A chi hết cho 3,7 và 15.
Cho B = 3+ 3^3+3^5+.....+3^1991. Chứng minh rằng B chia hết cho 13 và 41
A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}
={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}
=2{1+2}+2^3{1+2}+...+2^59{1+2}
=2.3+2^3.3+.....+2^59.3
=3.(2+2^3+...+2^59)
vi co thua so 3 => tich do chia het cho 3
A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}
={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}
=2{1+2}+2^3{1+2}+...+2^59{1+2}
=2.3+2^3.3+.....+2^59.3
=3.(2+2^3+...+2^59)
vi co thua so 3 => tich do chia het cho 3
Chứng minh rằng A = 3+3^2+3^3+3^4+...+3^2016 chia hết cho 40
A=3+32+.........+32016
A=3.(1+3+9+27)+.....+32013.(1+3+9+27)
A=3.40+.....+32013.40
A=40.(3+...+32013)
=> A\(⋮40\)
=> ĐPCM .
Chứng minh rằng :A=1+3+3^2+3^3+3^4+.....+3^2015 chia hết cho 5
B= 2+2^2+2^3+...+2^2016 chia hết cho 15
\(A=1+3+3^2+3^3+3^4+...+3^{2015}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{2012}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{2012}\right)\)
\(=40\left(1+3^4+...+3^{2012}\right)\)\(⋮\)\(5\)
\(B=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..+2^{2013}\left(1+2+2^2+2^3\right)\)
\(=\left(1+2+2^2+2^3\right)\left(2+2^5+...+2^{2013}\right)\)
\(=15\left(2+2^5+...+2^{2013}\right)\)\(⋮\)\(15\)
bài 1
cho A = 2+2^2+2^3+........+2^2010.chứng minh rằng :A chia hết cho 42
bài 2
cho B=3^+ 3^2+3^3+........+3^60.chứng minh rằng :B chia hết cho 4;13;12;40
bài 3
cho A= 4+4^2+4^3+..........+4^47+4^48 CMR :A chia hết cho 84
Bài 1 :
chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42
ta thấy 42 = 2 x 3 x 7
A chia hết 42 suy ra A phải chia hết cho 2;3;7
mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2 (1)
số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )
ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )
suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )
A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3
A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3
suy ra A chia hết cho 3 ( 2 )
ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )
suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )
A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )
A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )
A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7
A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7
suy ra A chia hết cho 7 (3)
từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7
suy ra A chia hết cho 42 ( điều phải chứng minh )
1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.
2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.
3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.
4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
1. Cho A=3+3^2+3^3+.....+3^60
Chứng minh rằng:
a, A chia hết cho 36
b, B chia hết cho 52
Cho B=3+32+33+.....+360.Chứng minh rằng A chia hết cho 4;chia hết cho 13
B=(3+32+33)+(34+35+36)+...+(358+359+360)
=3(1+3+9)+34(1+3+9)+...+358(1+3+9)
=13.3+13.34+...+13.358
=13.(3+34+...+358) luôn chia hết cho 13
vậy B chia hết cho 13
B=(3+32)+(33+34)+...+(359+360)
B=3(1+3)+33(1+3)+34(1+3)+...+359(1+3)
4(4+33+34+...+359)
suy ra:4(4+33+34+...+359)chia hết cho 4
ta có :(3^1+3^2+3^3)+(3^4+3^5)+.......+(3^58+3^59+3^60)
=(3+9+27)+3^4.(3+9+27)+.......+3^58.(3+9+27)
=39+3^4.39+.......+3^58.39
=39.(3^1+3^4+..........+3^58) chia het cho 13
(Vi 39 chia het cho 13 )
Vậy A chia hết cho 13
thanks