so sánh tổng: \(S=\sqrt{2007}+\sqrt{3.2005}+\sqrt{5.2003}+....+\sqrt{2007.1}\) với 10042
Rút gọn:
1. \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)
2. Cho 2 số a, b thỏa
\(\sqrt{a+5}-\sqrt{b-2}=3\)và \(\sqrt{a-7}-4\sqrt{b+1}=-6\). Tính M = a - 4b + 2016
3. Chứng minh: S = \(\sqrt{1.2007}+\sqrt{3.2005}+\sqrt{5.2003}+...+\sqrt{2007.1}< 1004^2\)
Bài 3:
Tự CM: 1.2007<2.2006<...<1004.1004(cái này lớp 5 nhé)
SUy ra \(\sqrt{1.2007}< \sqrt{2.2006}< ...< \sqrt{1004.1004}=1004\)
Có: \(S=2\left(\sqrt{1.2007}+\sqrt{3.2005}+...+\sqrt{1003.1005}\right)\)
\(S< 2\left(\sqrt{1004.1004}+\sqrt{1004.1004}+...+\sqrt{1004.1004}\right)\)
\(S< 2.\left(1004+1004+...+1004\right)=2.502.1004=1004.1004=1004^2\)
Suy ra đpcm. BẤM ĐÚNG CHO T NHÉ
so sánh tổng S=\(\sqrt{1\cdot2007}+\sqrt{3\cdot2005}+\sqrt{5\cdot2009}+....+\sqrt{2007\cdot1}\)và\(1004^2\)
So sánh: \(\left(2009+\sqrt{2007}\right)\left(2007+\sqrt{2007}\right)\&\left(2008+\sqrt{2007}\right)^2\)
\(\sqrt{2006}-\sqrt{2005}và\sqrt{2008}-\sqrt{2007}\)
So sánh
Easy
Ta có:
\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)
\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Easy
Ta có:
\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)
\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)
so sánh\(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\)và\(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
So sánh :\(\sqrt{2009}-\sqrt{2008};\sqrt{2008}-\sqrt{2007}\)
\(\frac{1}{\sqrt{2009}-\sqrt{2008}}=\frac{\sqrt{2009}+\sqrt{2008}}{\left(\sqrt{2009}+\sqrt{2008}\right)\left(\sqrt{2009}-\sqrt{2008}\right)}=\frac{\sqrt{2009}+\sqrt{2008}}{2009-2008}=\sqrt{2009}+\sqrt{2008}\)
CMTT : \(\frac{1}{\sqrt{2008}-\sqrt{2007}}=\sqrt{2008}+\sqrt{2007}\)
Vì \(\sqrt{2009}+\sqrt{2008}>\sqrt{2008}+\sqrt{2007}\)
=> \(\frac{1}{\sqrt{2009}-\sqrt{2008}}\sqrt{2008}-\sqrt{2007}\)
So sánh: \(\sqrt{2008}+\sqrt{2009}+\sqrt{2010}\) và \(\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
Ta có
\(\hept{\begin{cases}\sqrt{2008}+\sqrt{2005}< \sqrt{2015}+\sqrt{2009}\left(1\right)\\\sqrt{2010}+\sqrt{2007}< \sqrt{2015}+\sqrt{2009}\left(2\right)\end{cases}}\)
\(\Rightarrow\frac{1}{\sqrt{2008}+\sqrt{2005}}+\frac{1}{\sqrt{2010}+\sqrt{2007}}>\frac{2}{\sqrt{2015}+\sqrt{2009}}\)
\(\Leftrightarrow\frac{\sqrt{2008}-\sqrt{2005}}{3}+\frac{\sqrt{2010}-\sqrt{2007}}{3}>\frac{\sqrt{2015}-\sqrt{2009}}{3}\)
\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\sqrt{2010}>\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)
A=√2008+√2009+√2010A=2008+2009+2010 và B=√2005+√2007+√2015
k và kb với mình nha !!!
Cho \(A=\sqrt{2007}-\sqrt{2006}\) ; \(B=\sqrt{2008}-\sqrt{2007}\). Không sử dụng máy tính so sánh A và B.
\(A=\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\left(\sqrt{2007}+\sqrt{2006}\right)}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)(1)
\(B=\sqrt{2008}-\sqrt{2007}=\frac{\left(\sqrt{2008}-\sqrt{2007}\right)\left(\sqrt{2008}+\sqrt{2007}\right)}{\left(\sqrt{2008}+\sqrt{2007}\right)}=\frac{1}{\sqrt{2008}+\sqrt{2007}}\)(2)
Từ 1 và 2 => \(\frac{1}{\sqrt{2007}+\sqrt{2006}}>\frac{1}{\sqrt{2008}+\sqrt{2007}}\)
hay \(\sqrt{2007}-\sqrt{2006}>\sqrt{2008}-\sqrt{2007}\)
P/s tham khảo nha
So sánh
a/ \(\sqrt{2010} -\sqrt{2009} và \sqrt{2008} - \sqrt{2007}\)