CHO TỔNG A=1+3+32+33+...+32015.CHỨNG MINH RẰNG 2A+1 LÀ 1 SỐ CHÍNH PHƯƠNG
A=3+32+33+...+32015
a) CMR: A chia hết cho 121
b)tìm n biết 2A+3=27n
c) A có phải số chính phương ko??
giúp mình nha! ai làm đúng tui tick cho
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
Bài 1. Cho 𝐴 = 3 + 32 + 33 + ⋯ + 330.
- Chứng minh rằng: 𝐴 ⋮ 13 và 𝐴 ⋮ 52.
- Hỏi A có phải là số chính phương không? Tại sao?
CHO TỔNG A=1+3+32+33+...+32015.CHỨNG MINH RẰNG 2A+1 LÀ 1 SỐ CHÍNH PHƯƠNG
A=1+3+32+33+...+32015
=> 3A=3+32+33+...+32016
=> 3A-A=2A=(3+32+33+...+32016)-(1+3+32+33+...+32015)
=32016-1
=>2A+1=32016=(31013)2 là số chính phương.
cho dãy tổng A=1+3+32+33+...+32019
chứng minh 2A +1 là một số chính phương
Cho a,b,c là các số nguyên sao xcho 2a+b, 2b+c, 2c+a là các sos chính phương, biết rằng trong 3 số chính phương có 1 số chia hết cho 3. Chứng minh rằng: (a-b)(b-c)(c-a) chia hết cho 27
giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81
bài 1 : cho n là số tự nhiên lớn hơn 1 . Chứng minh rằng : n4+4n là hợp số
bài 2 : tìm số tự nhiên n sao cho 3n+55 là số chính phương
bài 3 : cho a+1 và 2a+1 ( n ( N ) đồng thời là hai số chính phương . Chứng minh rằng a chia hết cho 24
Cho A= 1-32+34-36+...+376-378. Chứng minh rằng 1-10A là một số chính phương
\(9A=3^2-3^4+3^6-3^8+...+3^{78}-3^{80}\)
\(10A=9A+A=1-3^{80}\)
\(\Rightarrow1-10A=3^{80}=\left(3^{40}\right)^2\) là số chính phương
choA=31+32+33+...32015.Tìm n biết 2A+3=3n
\(A=3+3^2+3^3+...+3^{2015}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)
\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)
\(\Rightarrow2A=3^{2016}-3\)
\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)
\(\Rightarrow3^{2016}-3+3=3^n\)
\(\Rightarrow3^{2016}=3^n\)
\(\Rightarrow n=2016\)