cho \(b^2\)=a.c; \(c^2\)= b.d. CMR: \(\left(\dfrac{a.b.c}{b.c.d}\right)\)^2=\(\dfrac{a}{d}\)
cho : b^2 = a.c . CMR a^2+b^2/a-c = c+d / b^2 + c^2= a/c
cho a/b=c/d chứng minh a.c/b.d=a^2+c^2/b^2+d^2
cho a+b/a-b=a+c/c-a.c/m a^2=bc
\(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)
=> ( a + b ) ( c -a ) = ( a + c ) ( a - b )
=> a ( c - a ) + b ( c - a ) = a ( a - b ) + c ( a - b )
=> ac - aa + bc - ba = aa - ab + ca - bc
=> - aa - aa = - bc - bc
=> - 2 a 2 = - 2 bc
=> a 2 = bc
Vậy \(\frac{a+b}{a-b}=\frac{a+c}{c-a}\)thì a 2 = bc
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR: \(\dfrac{a.c}{b.d}\) = \(\dfrac{a^2+c^2}{b^2+d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\\ \dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)CMR:
\(a,\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\) \(b,\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)\(c,\frac{a.c}{b.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
GIẢI GIÚP TỚ NHANH NHÉ! CẢM ƠN NHIỀU!
Cho a.c - c^2+ b.c - a.b= -1
Tính a+b
cho ti le thuc a/b=c/d.Chứng minh rằng (a.c)/(a^2+c^2)=(b.d)/(b^2+d^2)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}.\)
\(\Rightarrow\frac{ac}{a^2+c^2}=\frac{bd}{b^2+d^2}\left(đpcm\right).\)
Chúc bạn học tốt!
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\). Chứng minh \(\frac{^{a^2}+a.c}{c^2-a.c}\)= \(\frac{b^2+b.d}{d^2-b.d}\)
Nhanh hộ tớ nhé huhuhuhu
Ta đặt: a/b = a/d =k
=> a = b.k, c=d.k
Ta có: a2 + a.c/c2 - a.c=b2 + b.d/d2 - b.d
Vế trái: => (b.k)2 + (b.k)(d.k)/(d.k)2 - (b.k)(d.k)
=> b2.k2 + k(b.d)/d2.k2 - k.(b.d)
Ta lược bỏ các chữ giống nhau, ta được:
=> b2/d2
Vế phải: b2 +b.d/d2 - b.d
Ta cũng lược bỏ những chữa giống nhau ta được:
=> b2/d2
Vậy a2 +a.c/c2 + a.c = b2 + b.d/d2 - b.d
cho a.c - c^2 + bc - ab = -1
Chứng minh a= -b