tính giá trị của biểu thức \(A=\left(3x^3+8x^2+2\right)^{2018}\)
với \(x=\dfrac{\left(\sqrt{5}+\sqrt{2}\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
Tính giá trị của biểu thức \(A=\left(3x^3+8x^2+2\right)^{2011}\)với \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
Ta có : \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\frac{\left(\sqrt{5}+2\sqrt[3]{\sqrt{5}-2^{ }}\right)^3}{\sqrt{5}+3-\sqrt{5}}\) 2)3 trong căn bậc nhé mk ko vt đc ( ko bt giải thick thông cảm )
\(=\frac{\sqrt{5}^2-2^2}{3}\)
\(=\frac{1}{3}\)
Vậy \(A=\left(3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2\right)^{2011}=3^{2011}\)
Trả lời
A=(3x3+8x2+2)2011 với x=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3\sqrt{5}.4-8}}{\sqrt{5}\sqrt{9-6\sqrt{5}+5}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(5\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
=\(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)
=\(\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{3}\)
=1/3
Học tốt !
Tính giá trị của biểu thức
\(A=\left(3x^3+8x^2+2\right)^{2011}\) với \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}-\sqrt{14-6\sqrt{5}}}\)
Ta có
\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}-\sqrt{14-6\sqrt{5}}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3\cdot5\cdot2+3\sqrt{5}\cdot4-8}}{\sqrt{5}-\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)
\(=\frac{\sqrt{5}^2-2^2}{3}=\frac{1}{3}\)
Với \(x=\frac{1}{3}\)thay vào bt ta có
\(A=\left[3\cdot\left(\frac{1}{3}\right)^3+8\cdot\left(\frac{1}{3}\right)^2+2\right]^{2011}\)
\(=3^{2011}\)
Tính giá trị biểu thức : \(M=\left(3x^3+8x^2+2\right)^4\)
Với : \(x=\frac{\left(\sqrt{5}+2\right).\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
với x= \(\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14}-6\sqrt{5}}\) tính giá trị của biểu thức B=\(\left(3x^3+8x^2-2\right)^{2015}\)
tính giá trị của biểu thức :
\(A=\left(3x^3+8x^2+2\right)^{2011}\) với \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{9-6\sqrt{5}+5}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3.\sqrt{5}.2^2-2^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)
\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}=\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{3}\)
\(=\frac{1}{3}\) Chắc được rồi :))
Cho x=\(\frac{\left(\sqrt{5}+2\right)\cdot\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\) Tính A=\(\left(3x^3+8x^2+2\right)^{2018}\)
\(x=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}=\dfrac{3}{3}=1\)
\(A=\left(3\cdot1+8\cdot1+2\right)^{2018}=13^{2018}\)
Tính giá trị biểu thức:
\(A=\left(3x^3+8x^2+2\right)^{2005}\) biết \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
\(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{3}=\frac{\sqrt[3]{17\sqrt{5}-38}.\sqrt[3]{\left(\sqrt{5}+2\right)^3}}{3}\)
\(=\frac{\sqrt[3]{\left(17\sqrt{5}-38\right)\left(17\sqrt{5}+38\right)}}{3}=\frac{1}{3}\)
\(\Rightarrow A=\left[3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2\right]^{2005}=3^{2005}\)
a) Cho x = \(\frac{\sqrt[3]{10+6\sqrt{3}}\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)Tính giá trị biểu thức: A = \(\left(x^3-4x+1\right)^{2018}\)
b) Cho x = \(\sqrt[3]{7+5\sqrt{2}}-\frac{1}{\sqrt[3]{7+5\sqrt{2}}}\)Tính giá trị biểu thức: B = \(\left(x^3+3x-14\right)^{2018}\)
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
Cho \(x=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
Tính \(A=\left(3x^3+8x^2+2\right)^{1998}\)
Mẫu của x
\(\sqrt{5}+\sqrt{3^2-2.3.\sqrt{5}+5}=\sqrt{5}+\left|3-\sqrt{5}\right|=3\)
Tử của x
\(\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}=\left(\sqrt{5}+2\right)\sqrt[3]{\left(5\sqrt{5}\right)-3.\left(\sqrt{5}\right)^2.2+3.\sqrt{5}.2^2-2^3}=\left(\sqrt{5}+2\right)\sqrt{\left(\sqrt{5}-2\right)^3}=\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)=5-4=1\)
=> \(x=\dfrac{1}{3}\)
\(A=\left(\dfrac{3}{3^3}+\dfrac{8}{3^2}+2\right)^{1998}=\left(\dfrac{1+8+9}{3^2}\right)^{1998}=2^{1998}\)