Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bảo Linh
Xem chi tiết
nguyễn thái bình
20 tháng 11 2019 lúc 14:09

Các cụ cho con bỏ câu này

Khách vãng lai đã xóa
lili
20 tháng 11 2019 lúc 14:19

đề sai bn nhé

Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1

Đơn giản thôi: 

Xét n=3k=> n^2=9k^2 chia hết cho 3

Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1 

Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1


Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.

b) Có mn(m^2-n^2)

=mn(m-n)(m+n)

Nếu m hoặc n chia hết cho 3 thì xong luôn

Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3

Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3

Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3

Khách vãng lai đã xóa
Nguyễn Phúc Lâm
12 tháng 9 2021 lúc 15:13

khó.......................................qáu

Khách vãng lai đã xóa
Blue Frost
Xem chi tiết
Pain zEd kAmi
24 tháng 6 2018 lúc 16:59

n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3 
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9 
Vậy với mọi n la số t­­­­­­­­­­ự nhiên thì n.2+n+1 ko chia hết cho 9 

Blue Frost
Xem chi tiết
Đinh quang hiệp
24 tháng 6 2018 lúc 13:53

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

Lê Quang Tuấn Kiệt
24 tháng 6 2018 lúc 12:35

......................?

mik ko biết

mong bn thông cảm 

nha ................

HATTOYY
Xem chi tiết
Nguyễn Thị Cẩm Tú
Xem chi tiết
Hồng Hà Thị
Xem chi tiết
lili
16 tháng 11 2019 lúc 22:58

a)

=mn(m-n)(m+n)

Nếu 1 trg 2 số chia hết cho 3=> đpcm

Nếu cả 2 số cùng dư =>m-n chia hết cho 3 (đpcm)

Nếu cả 2 số khác dư (khác dư 0)=> m+n chia hết cho 3(đpcm)

Vậy mn(m^2-n^2) chia hết cho 3

b) Có 2005^2006 lẻ; 2006^2005 chẵn

Nếu n lẻ=> n+2005^2006 chẵn

Nếu n chẵn => n+2006^2005 chẵn

=> đều chia hết cho 2

=> đpcm.

Khách vãng lai đã xóa
Trần Công Dũng
Xem chi tiết
bí ẩn
Xem chi tiết
nguyễn minh
Xem chi tiết
Ngọc Lan Tiên Tử
19 tháng 7 2019 lúc 22:49

Violympic toán 9

tthnew
20 tháng 7 2019 lúc 19:00

Cách lớp 7 nà:)

\(\frac{1}{n.\left(n+1\right)^2}=\frac{1}{n.\left(n+1\right).\left(n+1\right)}< \frac{1}{n.n\left(n+1\right)}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\) (n>=2_

\(\text{Suy ra }VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)

Mặt khác ta có công thức \(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]}{2}\) (n>= 2)

Suy ra \(VT< \frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\left(\text{do }\frac{1}{n\left(n+1\right)}>0\right)\)

Vậy ta có đpcm

Gắt chưa??? :>> Dương Bá Gia Bảo

nguyễn minh
20 tháng 7 2019 lúc 12:20

mk làm đc rồi nha