Sosánh: M= 5^2018+1/5^2017+1 và N=5^2017+1/5^2016+1
So sánh A và B biết:
A=2016/2017+2017/2018+2018/2016
B=1/3+1/4+1/5+...+1/17
So Sánh A và B biết:
A = \(\frac{5^{2016}+1}{5^{2017}+1}\)và B = \(\frac{5^{2017}+1}{5^{2018}+1}\)
\(A=\frac{5^{2016}+1}{5^{2017}+1}\)
\(\Rightarrow5A=\frac{5^{2017}+5}{5^{2017}+1}=1+\frac{4}{5^{2017}+1}\)
\(B=\frac{5^{2017}+1}{5^{2018}+1}\)
\(\Rightarrow5B=\frac{5^{2018}+5}{5^{2018}+1}=1+\frac{4}{5^{2018}+1}\)
Do \(\frac{4}{5^{2018}+1}< \frac{4}{5^{2017}+1}\)
\(\Rightarrow5A>5B\Leftrightarrow A>B\)
So sánh
A = 52018 + 1/ 52017 + 1
B = 52017 + 1/52016 + 1
Tính :A= [(2018/1)+(2017/2)+(2016/3)+(2015/4)+...+(4/2015)+(3/2016)+(2/2017)+(1/2018)]/[(2019/2)+(2019/3)+(2019/4)+(2019/5)+...+(2019/2015)+(2019/2016)+(2019/2017)+(2019/2018)+(2019/2019)]
1: so sánh 2016/2017+2017/2018 với 1
2:tính: a)2/2017+2/2018 trên 5/2017+5/2018
b) -5/7.3/11+5/-7-8/11+3 và 5/7
ai làm nhanh mình tick nha mình đang cần gấp mình sẽ nhờ các bạn khác tick nếu các bạn làm đúng nha
1: so sánh 2016/2017+2017/2018
vì 2016/2017 > 1/2017 >1/2018 =
> 2016/2017+2017/2018 >1/2018+2017/2018=1
vậy .....
bạn làm đúng rồi nhưng mình cần 2 bài
2.a)2/2017+2/2018 trên 5/2017+5/2018
=2*(1/2017+1/2018) trên 5*(1/2017+1/2018)
=2/5
Câu b của bn mình ko hiểu cho lắm. Chữ "và" ở đây nghĩa là gì vậy?
so sánh A và B biết
A=\(\frac{5^{2016}+1}{5^{2017}+1}\) và B=\(\frac{5^{2017}+1}{5^{2018}+1}\)
So sánh A và B, biết:
A = \(\frac{6^{2016}+1}{5^{2017}+1}\)và B = \(\frac{5^{2016}+1}{5^{2018}+1}\)
tính nhanh:
a) (2016*2017+2018*2+2015):[(2018*2017-2017*2015)+2016]
b)2018*20182017-2017*20182018
c)1+2-3-4+5+6-7-8+...+298-299-300+301+302
tính tổng S= (1/2018!)+(1/3!2016!)+(1/5!2014!)+...+(1/2017!2!)+(1/2019!)
\(S=\dfrac{1}{2018!\left(2019-2018\right)!}+\dfrac{1}{2016!\left(2019-2016\right)!}+...+\dfrac{1}{2!\left(2019-2\right)!}+\dfrac{1}{0!\left(2019-0!\right)}\)
\(\Rightarrow2019!.S=\dfrac{2019!}{2018!\left(2019-2018\right)!}+\dfrac{2019!}{2016!\left(2019-2016\right)!}+...+\dfrac{2019!}{2!\left(2019-2\right)!}+\dfrac{2019!}{0!\left(2019-0\right)!}\)
\(=C_{2019}^{2018}+C_{2019}^{2016}+...+C_{2019}^2+C_{2019}^0\)
\(=\dfrac{1}{2}\left(C_{2019}^0+C_{2019}^1+...+C_{2019}^{2018}+C_{2019}^{2019}\right)\)
\(=\dfrac{1}{2}.2^{2019}=2^{2018}\)
\(\Rightarrow S=\dfrac{2^{2018}}{2019!}\)