* Toán hình 8:
_Cho tam giác ABC có BC = 8cm. Các đường trung tuyến BD, CE . Gọi M, N theo thứ tự là trung điểm của BE và CD. Gọi giao điểm của MN với BD, CE theo thứ tự là I và K.
a) Tính MN.
b) Chứng minh MI = IK = KN.
Giúp mk please !!
cho tam giác ABC có BC= 8cm, các trung tuyến BD, CE. Gọi MN theo thứ tự là trung điểm của BE, CD. Gọi giao điểm của MN với BD, CE theo thứ tự là I, K.
a) tính dộ dài MN.
b) chứng minh rằng MI=IK=KN
Cho tam giác ABC, các đường trung tuyến BD, CE và BC = 8cm
a) Chứng minh rằng: Tứ giác BEDC là hình thang.
b) Gọi M, N theo thứ tự là trung điểm của BE, CD. Tính MN?
c) Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh rằng:
giúp cái
Cho tam giác ABC có BC = 8cm, các trung tuyến BD, CE. Gọi MN theo thứ tự là trung điểm BD, CE. Gọi giao điểm của MN vs BE, CD theo thứ tự I và K.
a) Chứng minh rằng Mn = ( BC - ED ) : 2
b) Tính MN
c) Chứng minh MI = KN = MN
a) Đã có bài toán tương tự ở đây: Câu hỏi của zZz Cool Kid zZz (bạn thay tên các điểm cho phù hợp với bài này rồi làm theo hướng dẫn thôi)
b) ED là đường trung bình tam giác ABC nên ED// BC và \(ED=\frac{1}{2}BC=4\)(cm)
Áp dụng kết quả câu a): \(MN=\frac{BC-ED}{2}=\frac{8-4}{2}=\frac{4}{2}=2\) (cm)
c) Ta có MN = 2(cm) theo câu trên. (1)
MI là đường trung bình tam giác EBD nên \(MI=\frac{1}{2}ED=\frac{1}{2}.\frac{1}{2}BC=\frac{BC}{4}=\frac{8}{4}=2\) (2)
Tương tự \(NK=\frac{1}{2}ED=\frac{1}{4}BC=2\) (cm) (3)
Từ (1) và (2) và (3) suy ra \(MI=KN=MN\left(=2\right)\)
P/s: Câu c sai thì thôi nhé
Ấy chết, câu c nhầm, chưa biết I, K có phải là trung điểm hay không mà kết luận rồi:(
Cho tam giác ABC các đường trung tuyến BD và CE. Gọi M,N theo thứ tự là trung điểm của BE và CD. Gọi I, K theo thứ tự là giao điểm của MN với BD và CE. CMR: MI=IK=KN
Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh MI = IK = KN.
Trong ∆ ABC ta có: E là trung điểm của cạnh AB
D là trung điểm của cạnh AC
Nên ED là đường trung bình của ∆ ABC
⇒ ED // BC và ED = 1/2 BC
(tính chất đường trung bình của tam giác)
+) Tứ giác BCDE có ED // BC nên BCDE là hình thang.
Trong hình thang BCDE, ta có: BC // DE
M là trung điểm cạnh bên BE
N là trung điểm cạnh bên CD
Nên MN là đường trung hình hình thang BCDE ⇒ MN // DE
(tính chất đường trung bình hình thang)
Trong ∆ BED, ta có: M là trung điểm BE
MI // DE
Suy ra: MI là đường trung bình của ∆ BED
⇒ MI = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)
Trong ∆ CED ta có: N là trung điểm CD
NK // DE
Suy ra: NK là đường trung bình của ∆ CED
⇒ NK = 1/2 DE = 1/4 BC (tính chất đường trung bình của tam giác)
IK = MN – (MI + NK) = 3/4 BC – (1/4 BC + 1/4 BC) = 1/4 BC
⇒ MI = IK = KN = 1/4 BC
Cho tam giác ABC. Các đường trung tuyến BD; CE. Gọi M; N theo thứ tự là trung điểm của BE; CD. Gọi I; K theo thứ tự là giao điểm của MN và BD và CE. Chứng minh MI = IK = KN .
Cho tam giác ABC. Các đường trung tuyến BD; CE. Gọi M; N theo thứ tự là trung điểm của BE; CD. Gọi I; K theo thứ tự là giao điểm của MN và BD và CE. Chứng minh MI = IK = KN .
Con tham khảo tại link dưới đây nhé:
Câu hỏi của Dương Ánh Ngọc - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC. Các đường trung tuyến BD; CE. Gọi M; N theo thứ tự là trung điểm của BE; CD. Gọi I; K theo thứ tự là giao điểm của MN và BD và CE. Chứng minh MI = IK = KN .
:a,nối E với D,ED là đường trung bình nên ED=4cm
MN là đường trung bình hình thang BEDC nên MN=(8+4):2=6
b,vì MI // ED và M là trung điểm BE => MI là đường trung bình ∆BED
MI=1/2 ED,tương tự ta có KN=MI=1/2 ED (*)
vì ED=1/2 BC mà ∆EDG∞∆IKG∞CBG(G là giao 2 tiếp tuyến)
nên IK=1/2 ED <=> kết hợp với(*)ta có KN=MI=IK=1/2ED
Bài2:gọi đoạn nối trung điểm 2 cạnh AB và AC của tứ giác ABCD là MN,ta có MN=1/2 BC,trong ∆BCD có BC<BD+CD nên MN< BD+CD(bất đẳng thức tam giác)
Bai3:gọi tứ giác đó là ABCD,MN là cạnh nối trung điểm,kéo dài AN giao DC tại E,ta có AB=CE ,nên ta có ∆ABN=∆CEN =>gocBAN=góc CEN.Mà 2 góc nằm ở vị trí so le trong nên AB // DC => ABCD là hình thang.
Bai4:a,kẻ BK // AD,ta có hình bình hành ABKD =>IE là hiệu 2 đáy,kẻ đường cao BH',ta có ∆BCH'=∆ADH,mà ∆BIE cân nên H' là trung điểm IE =>HD=1/2(DE-AB)
b,kẻ BG // với AC,ta có hình bình hành ABGC =>AB=CG
vì ABH'H là hình vuông=>AB=HH'=>HH'=CG mà H'C=DH nên ta có
HH'+H'C=CG+DH mà (HH'+H'C)+(CG+DH)=DG=DC+AB
=>HH'+H'C=HC=1/2(DC+AB)
Bài5:Từ M kẻ MM' vuông góc với d,ta có MM'//BB'//CC'
mà M là trung điểm BC nên MM' là đường trung bình hình thang BB'C'C,ta lại có O là trung điểm AM=>∆AA'O=∆MM'O nên AA'=MM'
ta có MM'=AA'=(BB'+CC'):2
Bài6:Kẻ MN//AB//DC =>MN=(7+3)/2=5 =>∆ANM và∆DNM cân tại N
góc AMN=(180độ-gócANM)/2
góc DMN=(180độ-gócDNM)/2
góc AMN+góc DMN=(180độ-gócANM+180độ-gócDNM)/2
=(360độ-180độ)/2=90độ=gócAMD=>AM vuông góc với DM
còn 3 bài cuối bác nào khỏe tay thì giúp cháu nó hộ em với,em mỏi tayquá rồi
Chi tiết thêm:
lâu lắm mới vào lại câu này
Bài7:từ C kẻ đường vuông góc với BE tại M
kéo dài CM giao AB tại N
Ta có ∆CME đồng dạng với ∆CAN (gg)
=>góc CEM= góc CNA
vì góc CEM= góc AEB (đối đỉnh)
=> góc CNA= góc AEB
=>∆CAN=∆BAE(góc nhọn,cạnh góc vuông,góc 90º)
=>AE=AN=AD
vì AN=AD
mà AK // CN
=> AK là đường trung bình hình thang CIDN
=>IK=KC
Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh
a, MK=ED=IN
b,MI=IK=KN
a:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC
Xét hình thang BEDC có
M là trung điểm của EB
N là trung điểm của DC
Do đó: MN là đường trung bình của hình thang BEDC
Suy ra: MN//ED//BC
Xét ΔEBD có
M là trung điểm của EB
MI//ED
Do đó: I là trung điểm của BD
Xét ΔEDC có
N là trung điểm của DC
NK//ED
Do đó: K là trung điểm của EC
Xét ΔEBC có
M là trung điểm của EB
K là trung điểm của EC
Do đó: MK là đường trung bình của ΔEBC
Suy ra: \(MK=\dfrac{BC}{2}\left(1\right)\) và MK//BC
Xét ΔDBC có
I là trung điểm của BD
N là trung điểm của DC
Do đó: IN là đường trung bình của ΔDBC
Suy ra: \(IN=\dfrac{BC}{2}\left(2\right)\)
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: \(ED=\dfrac{BC}{2}\left(3\right)\)
Từ (1), (2) và (3) suy ra MK=IN=ED
Cho tam giác ABC. Các đường trung tuyến BD; CE. Gọi M; N theo thứ tự là trung điểm của BE; CD. Gọi I; K theo thứ tự là giao điểm của MN với BD; CE. Chứng minh MI = IK = KN
Hình trên, đặt BC = a
Vì \(\Delta ABC\)có \(AE=EB;AD=DC\)nên \(ED\)là đường trung bình . Do đó ED song song BC và \(ED=\frac{BC}{2}=\frac{a}{2}\)
Do MN là đường trung bình của hình thang BEDC nên MN song song ED song song BC
\(\Delta BED\)có \(BM=ME;MI\)song song \(ED\)nên \(MI\)là đường trung bình , \(MI=\frac{ED}{2}=\frac{a}{4}\)
\(\Delta CED\)có \(CN=ND;NK\)song song \(ED\)nên \(NK\)là đường trung bình ,\(NK=\frac{ED}{2}=\frac{a}{4}\)
\(\Delta EBC\)có \(EM=MB;MK\)song song \(BC\)nên \(MK\)là đường trung bình ,\(MK=\frac{BC}{2}=\frac{a}{2}\)
\(\Rightarrow IK=MK-MI=\frac{a}{2}-\frac{a}{4}=\frac{a}{4}\)
Vậy \(MI=IK=KN\)
Cho tam giác ABC, các đường trung tuyến BD và CE. Gọi M, N theo thứ tự là trung điểm của BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD và CE. Chứng minh rằng: MI = IK = KN
Giúp e nhé, thanks nhìu ạ!