cho hbh ABCD .keAE,CF lan luot vuong goc voi BD tai E,F c/m
a)AECF la hbh
b)AE kéo dài cắt DC tại K ,CF kéo dài cắt AB tại H.c/m ÁC,BD,HK đồng quy
Cho hình bình hành ABCD (AB > AD). Vẽ AE, CF vuông góc BD. AE kéo dài cắt CD tại H và CF kéo dài cắt AB tại K. Chứng minh rằng:
a) Tứ giác AECF là hình bình hành
b) AC, BD, HK đồng quy
a: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
=>AE=CF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: AE//CF
E\(\in\)AH
F\(\in\)CK
Do đó: AH//CK
AB//CD
K\(\in\)AB
H\(\in\)CD
Do đó: AK//CH
Xét tứ giác AHCK có
AH//CK
AK//CH
Do đó: AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường(1)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,HK,BD đồng quy
cho hình bình hành ABCD (AB>AD) kẻ AE,CE lần lượt vuông góc BD tại E , F chứng minh rằng : a, AECF Là hình bình hành
b, AE kéo dài cắt CD tại K , CF kéo dài cắt AB tại H . chứng tỏ rằng AC , BD , HK ĐỒNG QUY
ai giúp mk vs mình câu b thôi]
Trường Tiểu học Bến Thủy - Thành phố Vinh Xuất sắc (100 điểm): 0 | Điểm hỏi đáp: 0 |
cho hình bình hành ABCD có AB lớn hơn AD vẽ AE vuông góc BD , CF vuông góc với BD
AE kéo dài cắt DC tại H
CF ........... cắt AB tại K
CM : a, AECF là hình bình hành
b, AC,BD,HK đồng quy
gọi o là giao của 2 đường chéo ac và bd
xét hbh abcd có 2 đường cháo ac và bd mà 2 đường chéo này lại giao nha ở o (cmt)
=> o là trung điểm của ac ; o là trung điểm của bd
xét tam giác vuông aoe và tâm giác vuông bfc
có góc aoe = góc foc (đối đỉnh )
ao=oc( o là ủng điểm của oc chứng minh rên)
-> tam giác vông aoe = tam giác vuông bfc( trường hợp cạnh huyền goác nhọn )
=> ae=cf (t/c....)
có ae=cf( cùng vuông góc với bd)
=> aecf là hình bình hành ( định nghĩa 3 : 1 cặp cạnh đối song song và = nhau)
b) tự vẽ hình nối thêm cho chính xác nhé
có abcd là hình bình hành (gt)
mà ac và bd giao tại o
-=> o là tủng điểm của ac (t/c...)
có ab//cd=> ak //hc
có ae//fc( vì aecf là hbh chứng minh câu a)=> ah // ck mà ak //ch
=> akch là hbh ( định nghĩa 1: các cặp cạnh đối song song )
có akch là hbh (cmt) có ac và hk là 2 đường chéo
o là trung điểm của ac (cmt)
=> o là tủng điểm của hk => hk đi qua o mà ac và bd cũng đi qua o (câu a)
=> hk ,ac và bd cùng đi qua o
=> hk ,bd và ac đồng quy tại o ,
ko hiểu hoặc mk sai chỗ nào ib hộ mk nhé
Cho hình bình hành ABCD . AB > AD , AE vuông góc với BD , CF vuông góc với BD (E,F thuộc BD) . AE kéo dài cắt CD tại H . CF kéo dài cắt AB tại K . Chứng minh :
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AHDK là hình bình hành.
Cho hình bình hành ABCD . AB > AD , AE vuông góc với BD , CF vuông góc với BD (E,F thuộc BD) . AE kéo dài cắt CD tại H . CF kéo dài cắt AB tại K . Chứng minh :
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AHDK là hình bình hành.
Cho hình bình hành ABCD . AB > AD , AE vuông góc với BD , CF vuông góc với BD (E,F thuộc BD) . AE kéo dài cắt CD tại H . CF kéo dài cắt AB tại K . Chứng minh :
a) Tứ giác AECF là hình bình hành.
b) Tứ giác AHDK là hình bình hành.
a) ABCD là hình bình hành => AD=BC, AD//BC
--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)
Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.
b) AHDK không thể là hình bình hành nha --> phải là AHCK
Chứng minh: AH//CK (cùng vuông góc BD)
CH//AK (vì ABCD là hình bình hành)
=> AHCK là hình bình hành
Cho hbh ABCD . Tu A ke AH vuong goc voi BD tai H, tu C ke CK vuong goc voi BD tai K.
a/ CM AKCM la hbh
b/Goi I la trung diem cua HK, AH cat DC tai M, CK cat AB tai N
CMR 3 diem I, M,N thang hang
Cho hình bình hành ABCD. Trên BD lấy điểm E và F sao cho DE = BF.
a/ c/m AECF là hình bình hành
b/ AE cắt DC tại N, CF cắt AB tại M
c/m AC, BD, MN đồng quy
a: Xét ΔAED và ΔCFB có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
DE=BF
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF
Xét ΔABF và ΔCDE có
AB=CD
\(\widehat{ABF}=\widehat{CDE}\)
BF=DE
Do đó: ΔABF=ΔCDE
Suy ra: AF=CE
Xét tứ giác AECF có
AF=CE
AE=CF
Do đó: AECF là hình bình hành
Bài 1
Cho tứ giác ABCD có M,N,P,Q,E,F là trung điểm của AB, BC,CD,DA,AC,BD.Chứng minh:
1.MN=PQ và NP=MQ
2.MF=PE và ME=PF
3.Tứ giác MEPF và MNPQ là hình bình hành
4. MP,NQ,EF đồng quy
Bài 2
Cho hình bình hành ABCD.AB>AD, vẽ AE vuông góc BD , CF vuông góc BD ( E,F thuộc BD).AE kéo dài cắt CD tại H và CF kéo dài cắt AB tại K.Chứng minh:
1. AECF là hình bình hành
2.AHCK là hình bình hành
3.AC,BD,HK đồng quy
Mong các bạn giúp đỡ mình