tìm các số nguyên tố p,q sao cho: p^2=8q+1
Tìm các số nguyên tố p;q sao cho p2 = 8q + 1
Tìm các số nguyên tố p ; q sao cho: p2 = 8q + 1
Tìm p,q là các số nguyên tố sao cho:p^2=8q-1
bài toán có cách giải như sau. Chứng minh mọi số chính phương chia 8 dư 0 hoặc 1. Mà 8q-1 chia 8 dư 7 nên vô lí nên ko có p,q thỏa mãn.
Tìm p,q là số nguyên tố sao cho p^2=8q-1
cậu thử lấy 9^2=81 xong rồi lấy 81+1=82
vậy p=9 và q=2 nhé
như thế sẽ đúng đấy
ta sẽ có :9^2=82-1
81=81
thế nhé
chúc bạn học giỏi nha
81=81
bạn nhé
tk nha@@@@@@@@@@@@@@@@@@@@@@@@@
hihi
tìm số nguyên tố p;q sao cho p2=8q+1
ta có 8q+1=p^2
->8q=p^2-1
->8q=(p-1)(p+1) sử dụng T/C:(a+b)(c+d)=a*(c+d)+b*(c+d) (dấu * là nhân nhé)
vì p là số nguyên tố nên (p-1)(p+1) chia hết cho 24 (T/C: tích 2 số chẳn liên tiếp thì chia hết cho 24) . bạn tự chứng minh nhé
mà 24 chia hết cho 8
do đó số nguyên tố q=3.
từ đó tìm ra p=5
vậy p=3;q=5
cm 2 sc liên tiếp chia hết cho 24 kiểu j bn ơi
Tìm 2 số nguyên tố p và q sao cho p\(^2\)=8q+1
Ta có số chính phương khi chia cho 3 thì có số dư là 0 và 1
TH1: \(p^2\)chia hết cho 3 mà p lại là số nguyên tố nên \(p=3\Rightarrow q=1\left(loai\right)\)
TH2: TH1: \(p^2\)chia cho 3 dư 1.
\(\Rightarrow8q+1\)chia 3 dư 1
\(\Rightarrow8q\)chia hết cho 3. Mà 3, 8 nguyên tố cùng nhau nên \(q=3\Rightarrow p=5\)
Ta có số chính phương khi chia cho 3 thì có số dư là 0 và 1
TH1 : P2 chia hết cho 3 mà P lại là số nguyên tố nên P = 3 => q = 1 ( loại )
TH2 : TH1 : p2 chia cho 3 dư 1
=> 8q + 1 chia 3 dư 1
=> 8q chia hết cho 3 . Mà 3 và 8 nguyên tố cùng nhau nên q = 3 => p = 5
HỌC TỐT
Bài 1: Tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố:
a) p + 2, p + 6, p + 8, p + 14.
b) p + 6, p + 8, p + 12, p + 14.
c) p + 4, p + 6, p + 10, p + 12, p+16, p+22.
Bài 2: Chứng minh rằng mọi ước số nguyên tố của: 2018! – 1 đều lớn hơn 2018.
Bài 3: Tìm tất cả các số nguyên tố x, y sao cho: x2 – 6y2 = 1.
Bài 4: Tìm p, q là các số nguyên tố sao cho: p2 = 8q + 1
Bài 5: Cho p là số nguyên tố. Chứng minh rằng (p-1)! không chia hết cho p.
bây giờ mới lên lớp 6 mà tự nhiên cho bài lớp 7
DỄ MÀ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tìm các số nguyên tố p,q thoả mãn : \(p^2=8q+9\)
Ta có: \(p^2=8q+9\)
<=>\(p^2-9=8q\)
<=>\(\left(p-3\right)\left(p+3\right)=8q\)
Do q là số nguyên tố=> q chia hết cho 1 hoặc chính nó =>Một trong hai số \(p-3\)và \(p+3\)bằng 8
=>\(\orbr{\begin{cases}p-3=8\\p+3=8\end{cases}}\)<=>\(\orbr{\begin{cases}p=11\\p=5\end{cases}}\)<=>\(\orbr{\begin{cases}q=14\left(lọai\right)\\q=2\end{cases}}\)
Vậy \(p=5\)và \(q=2\)
1. tìm số nguyên tố p,q sao cho
a) p+10,p+14 là các sô nguyên tố
b) q+2,q+10 là các số nguyên tố
a)nếu p=2 thì :
p+10=2+10=12 là hợp số(loại)
nếu p=3 thì:
p+10=3+10=13 là số nguyên tố
p+14=3+14=17 là số nguyên tố
(thỏa mãn)
nếu p>3 thì:
p sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:p=3k+1
nếu p=3k+1 thì:
p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:p=3k+2
nếu p=3k+2 thì:
p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu p>3 thì không có giá trị nào thỏa mãn
vậy p=3
b)nếu q=2 thì :
q+10=2+10=12 là hợp số(loại)
nếu q=3 thì:
q+2=3+2=5 là số nguyên tố
q+10=3+10=13 là số nguyên tố
(thỏa mãn)
nếu q>3 thì:
q sẽ bằng 3k+1 hoặc 3k+2
trường hợp 1:q=3k+1
nếu q=3k+1 thì:
q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)
trường hợp 2:q=3k+2
nếu q=3k+2 thì:
q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)
vậy nếu q>3 thì không có giá trị nào thỏa mãn
vậy q=3
1.tìm 3 số nguyên tố liên tiếp p,q,r sao cho \(p^2+q^2+r^2\)cũng là số nguyên tố
2.tìm tất cả các bộ ba số nguyên tố a,b,c sao cho a.b.c<a.b+b.c+c.a
Bài 2 :
Tham khảo nha bạn !
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Vì a,b,c có vai trò như nhau. Giả sử a<b<c
Khi đó ab+bc+ca =< 3bc
=> abc<3bc => a<3 => a=2 (vì a là số nguyên tố)
Với a=2, ta có:
2bc < 2b+2c-bc =< 4c
=> b<4 => b=2 hoặc b=3
Nếu b=2 thì 4c<2+4c thỏa mãn với c là số nguyên bất kì
Nếu b=3 thì 6c<6+5c => c<6 => c=3 hoặc c=5
Vậy các cặp số (a,b,c) cần tìm là: (2;2;p);(2;2;3);(2;3;5) và các hoán vị của chúng với p là số nguyên tố
vì a ,b ,c có vai trò như nhau.giả sử a<b<c
khi đó ab+bc+ca=<3bc
=>abc<3bc=>a<3=a =2(vì a là số nguyên tố)
với a=2 , ta có
2bc<2b +2c -bc=<4c
=>b<4 =>b=2 hoặc 3
nếu b=2 thì 4c <2+4c thỏa mãn với c là số nguyên bất kì
nếu b=3 thì 6c<6+5c=.c<6=>c=3 hoặc c =5
vạy các cặp số (a,b,c) cần tìm là(2;2;p);(2;2;3);(2;3;5) và các hoán vị của chúng với p là số nguyên tố