Phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
a)36x2-21x-2
BT3: Phân tích các đa thức sau thành nhân tử bằng phương pháp cách tách hạng tử. a, x^3 + 4x^2 - 21x b, 5x^3 + 6x^2 + x c, x^3 - 7x + 6 d, 3x^3 + 2x - 5
a) \(x^3+4x^2-21x\)
\(=x\left(x^2+4x-21\right)\)
\(=x\left(x^2-3x+7x-21\right)\)
\(=x\left[x\left(x-3\right)+7\left(x-3\right)\right]\)
\(=x\left(x-3\right)\left(x+7\right)\)
b) \(5x^3+6x^2+x\)
\(=x\left(5x^2+6x+1\right)\)
\(=x\left(5x^2+5x+x+1\right)\)
\(=x\left[5x\left(x+1\right)+\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(5x+1\right)\)
c) \(x^3-7x+6\)
\(=x^3+2x^2-3x-2x^2-4x+6\)
\(=x\left(x^2+2x-3\right)-2\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x^2+2x-3\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+3\right)\)
d) \(3x^3+2x-5\)
\(=3x^3+3x^2+5x-3x^2-3x-5\)
\(=x\left(3x^2+3x+5\right)-\left(3x^2+3x+5\right)\)
\(=\left(x-1\right)\left(3x^2+3x+5\right)\)
Phân tích đa thức thành nhân tử:
a) 8x2 - 2x - 1 (bằng phương pháp tách hạng tử)
b) x2 - y2 + 10x - 6y + 16 (bằng phương pháp tách hạng tử)
a) 8x2 - 2x - 1
=8x2+2x-4x-1
=2x.(4x+1)-(4x+1)
=(4x+1)(2x-1)
b) x2 - y2 + 10x - 6y + 16
=x2+10x+25-y2-6y-9
=(x+5)2-(y+3)2
=(x+5-y-3)(x+5+y+3)
=(x-y+2)(x+y+8)
Phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử tự do: 3x^2 - 8x + 4
3x^2 - 8x + 4
= 3x^2 - 6x - 2x + 4
=( 3x^2 - 6x ) - ( 2x - 4)
=3x(x-2) - 2(x-2)
=(3x-2) - (x-2)
phân tích đa thức thành nhân tử sử dụng phương pháp tách 1 hạng tử thành nhiều hạng tử:a^4 + a^2 +1
a4 + a2 +1
= (a2)2 + 2a2 +1 -a2
= (a2 +1)2 -a2
= (a2 +1 -a)(a2 +1 +a)
Cho xin mẹo: cách phân tích đa thức thành nhân tử bằng phương pháp tách 1 hạng tử thành nhiều hạng tử đối với các đa thức có bậc ba trở lên
phương pháp này mình gọi là phương pháp nhẩm nghiệm:
- Nếu tổng tất cả các hệ số bằng o thì đa thức có 1 nghiệm là x=1 hay chứa thừa số là x-1
- Nếu tổng tất cả các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ thì đa thức có một nghiệm là x=-1 hay chứa thừa số là x+1
Phân tích đa thức thành nhân tử bằng phương pháp tách hoặc thêm bớt hạng tử: x^3 - 3x^2 - 4
Phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
2m\(^{^2}\)+ 10m + 8
\(2m^2+10m+8\)
\(=2\left(m^2+5m+4\right)\)
\(=2\left(m^2+4m+m+4\right)\)
\(=2\left(m+4\right)\left(m+1\right)\)
=2m2+8m+2m+8
=(2m2+2m)+(8m+8)
=2m(m+1)+8(m+1)
=(m+1)(2m+8)
=(m+1)2(m+4)
=2(m+1)(m+4)
HT~
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
\(x^3+3x^2-4\)
\(x^3+3x^2-4\)
\(=\left(x^3+4x^2\right)-\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x-1\right)\)
Mình nhìn nhầm đề
\(x^3+3x^2-4\)
\(=\left(x^3+2x^2\right)+\left(x^2-4\right)\)
\(=x^2\left(x+2\right)+\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+x-2\right)\)
\(=\left(x+2\right)\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)
\(=\left(x+2\right)\left(x+2\right)\left(x-1\right)\)
\(=\left(x+2\right)^2\left(x-1\right)\)
Phân tích đa thức thành nhân tử:(phương pháp tách hạng tử)
x^2-2x-48
\(x^2+6x-8x-48=\left(x^2+6x\right)-\left(8x+48\right)\)
\(=x\left(x+6\right)-8\left(x+6\right)=\left(x+6\right)\left(x-8\right)\)
Theo bài ra , ta có :
\(x^2-2x+1-49\)
\(=\left(x-1\right)^2-7^2\)
\(=\left(x-1-7\right)\left(x-1+7\right)\)
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
x^3 - 5x^2 + 8x - 4
x^3 - 9x^2 + 6x +16
a, = (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4) = (x-1).(x-2)^2
b, = (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ] = (x+1).(x-2).(x-8)
k mk nha
a)= (x^3-x^2)-(4x^2-4x)+(4x-4)
= (x-1).(x^2-4x+4)
= (x-1).(x-2)^2
b)= (x^3+x^2)-(10x^2+10x)+(16x+16)
= (x+1).(x^2-10x+16)
= (x+1).[ (x^2-2x)-(8x-16) ]
= (x+1).(x-2).(x-8)
P/s tham khảo nha