cho ab là 2 số hữu tỉ dương thỏa mãn a^2 +b^2=1 cmr: a^10+b^10<1
cho ab là 2 số hữu tỉ dương thỏa mãn a^2 +b^2=1 cmr: a^10+b^10<1
Cho a, b là số hữu tỉ dương thỏa mãn a^5 + b^5 = 2(ab)^2. Chứng minh √(1 - ab) là số hữu tỉ (
Cho a,b hữu tỉ thỏa mãn a^3b+ab^3+2a^2b^2+2a+2b=0. CMR 1-ab là bình phương của 1 số hữu tỉ
cho a,b là các số hữu tỉ thỏa mãn \(a^2+b^2=4-\left(\frac{ab+2}{a+b}\right)^2\).CMR:\(\sqrt{ab+2}\)là số hữu tỉ
Cho a, b, là số hữu tỉ thỏa mãn: \(\left(a^2+b^2-2\right).\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\). CM: \(\sqrt{1+ab}\) là số hữu tỉ
cho a.b là các số hữu tỉ thỏa mãn:\(^{^{a^2}+b^2+\left(\frac{a\cdot b+1}{a+b^2}\right)^2=2.}cmr:\sqrt{a\cdot b+1}\)cũng là số hữu tỉ
\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)
\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)
\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)
Cho số hữu tỉ a,b,c thỏa mãn 4(ab+bc+ca)=1.
Cmr (1+4a2 )(1+4b2 )(1+4c2 ) là bình phương của một số hữu tỉ
Thay 1= 4(ab+bc+ca), Ta có:
\(\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)
\(=4\left(ab+bc+ca+a^2\right).4\left(ab+bc+ca+b^2\right).4\left(ab+bc+ca+c^2\right)\)
\(=64.\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)\)
\(=64\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(=\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Mà a, b, c là số hữu tỉ
\(\Rightarrow\left[8\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)là bình phương một số hữu tỉ
\(\Rightarrow\left(1+4a^2\right)\left(1+4b^2\right)\left(1+4c^2\right)\)là bình phương một số hữu tỉ
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a,b,c là các số hữu tỉ thoả mãn điều kiện : ab + bc + ca = 1 , Cmr : (1+a^2)(1+b^2)(1+c^2) là bình phương của một số hữu tỉ .?
\(ab+bc+ac=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)
\(=\left(ab+bc+ac+a^2\right)\left(ab+bc+ac+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)\)
\(=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)