cho abcd là hình thang (ABsong song với CD) D=2B ,AD=5,CD=2.tính AB
Cho hình thang ABCD (ABsong song CD) AB nhỏ hơn DC .chứng minh DC-AB < AD+BC
Vẽ tia Bx song song với AD và gọi AD giao với DC la E
Ta có: BE song song với AD
AB song song với DE
=)AB=DE ; AD=BE
BE+BC>EC (bất đẳng thức tam giác)
=)AD+BC>DC-DE =)AD+BC>DC-AB
Bài 5: Cho hình thang ABCD (AB//CD), biết Ax,Dy lần lượt là phân giác của góc A, góc D của hình thang. Chứng minh Ax vuông góc với Dy
Bài 6: Cho hình thang ABCD (AB//CD,AB<CD). Qua B kẻ đường thẳng song song với AD cắt CD tại E. Chứng minh:
a) AD=BE , AB=DE
b) CD-AB=CE
c) BC+AD>CD_AB
Bài 5
\(\widehat{A}+\widehat{D}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\widehat{DAx}=\widehat{BAx}=\dfrac{\widehat{A}}{2}\) (gt)
\(\widehat{ADy}+\widehat{CDy}=\dfrac{\widehat{D}}{2}\) (gt)
\(\Rightarrow\widehat{DAx}+\widehat{ADy}=\dfrac{\widehat{A}}{2}+\dfrac{\widehat{D}}{2}=\dfrac{180^o}{2}=90^o\)
Xét tg ADE có
\(\widehat{AED}=180^o-\left(\widehat{DAx}+\widehat{ADy}\right)=180^o-90^o=90^o\) (Tổng các góc trong của tg bằng 180 độ)
\(\Rightarrow Ax\perp Dy\)
Bài 6:
a/
Ta có
AB//CD => AB//DE
BE//AB (gt)
=> ABED là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AB = DE; AD = BE (Trong hình bình hành các cạnh đối nhau thì bằng nhau)
b/
CD - DE = CE
Mà AB = DE (cmt)
=> CD - AB = CE
c/
Xét tg BCE có
BC+BE>CE (trong tg tổng độ dài 2 cạnh lớn hơn độ dài cạnh còn lại)
Mà CE = CD - DE và DE = AB (cmt) và BE = AD
=> BC+BE = BC + AD>CE = CD - AB
Gọi G là giao điểm của hai đường phân giác Ax và By
Ta có: \(\widehat{ADG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) ( vì DG là phân giác góc ADE)
\(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{DAB}\)( vì AG là phân giác góc DAB )
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\)\(\widehat{ADE}\) + \(\dfrac{1}{2}\)\(\widehat{DAB}\) = \(\dfrac{1}{2}\)(\(\widehat{ADE}\) + \(\widehat{DAB}\))
\(\widehat{ADE}\) + \(\widehat{DAB}\) = 1800 (vì hai góc là hai góc trong cùng phía)
⇒ \(\widehat{ADG}\) + \(\widehat{DAG}\) = \(\dfrac{1}{2}\) \(\times\) 1800 = 900
Xét tam giác ADG có: \(\widehat{GAD}\) + \(\widehat{ADG}\) + \(\widehat{DGA}\) = 1800 (tổng ba góc trong 1 tam giác bằng 1800)
⇒ \(\widehat{DGA}\) = 1800 - 900 = 900
Vậy tam giác ADG vuông tại G ⇒AE \(\perp\) DG (đpcm)
Hinh thang Abcd (ABsong song CD) co AB=2cm, CD= 5cm. Chung minh rang AD+BC> 3cm
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Bài 1: Cho hình thang ABCD ( có AB// CD). Gọi E là trung điểm của AD. Kẻ đường thẳng qua E song song với AB và cắt BC tại F.
a) Chứng minh F là trung điểm của BC.
b) Cho AB = 4; CD =12. Tính EF.
Bài 2: Cho hình thang ABCD (có AB // CD; AB < CD). Gọi E, F, G lần lượt là trung điểm của AD, AC, BD.
a) Chứng minh E, F, G thẳng hàng.
b) Chứng minh EF = (CD-AB)/2.
Cho hình thang ABCD AB song song CD có góc C + góc D bằng 90 độ AB = 5 cm CD = 15 cm AD bằng 6 cm BC = 8 cm Tính diện tích hình thang
bài 1 : cho hình thang cân ABCD (ABsong song CD) góc D =60 độ , CD=49cm , AB =15cm . qua B kể đường thẳng song song AD cắt CD tại E
a, cm tám giác BCE đều
b, Tính EC và chu vi hình thang ABCD
c, tìm diện tích tam giác ABD trên diện tích tam giác BCD
bài 2 cho tam giác ABC , M là trung điểm BC , D thuộc AC sao cho CD=2AD, AM giao BD tại I
a, CM I là trung điểm của AM
b, tam giác ABC có trung tuyến AM , I là trung điểm của AM , BT giao AC tại D , Chứng minh :AD =1/2 DC
Cho hình thang cân ABCD có AB song song CD,ad = ab = A ,góc ADC = 60° A,B.C,D là trung điểm của AB, BC ,CD, DA
a/ Tính diện tích hình thang ABCD
b/Chứng minh A,B,C,D là hình thoi
Bài 1. Cho hình thang cân ABCD (AB//CD) có D̂ = 600, CD = 49 cm, AB = 15 cm. Qua B vẽ đường thẳng song song với AD cắt CD tại E
a) Chứng minh rằng BCE là tam giác đều.
b) Tính EC và chu vi hình thang ABCD.
Xét hình thang cân ABCD có
Góc D = 60 độ
=> Góc C=60 độ ( định lí hình thang cân)
Xét tamm giác BEC
Có góc C=60 độ
=> Tam giác BEC đều ( định lí tam giác đều)