Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.
Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.
Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.
a)Chứng minh : IE=IF
b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.
Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân
Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB
a)Chứng minh :DB là phân giác góc ADC
b)Chứng minh : DB vuông góc với BC
cho hình thang cân abcd có ab song song cd và ab nhỏ hơn cd biết ad=bc
a)chứng minh ab=bc
b)chứng minh db là phân giác góc adc
Bài 3.Cho hình thang ABCD (AB // CD) có AD = CD và AC vuông góc BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E. a) Chứng minh tứ giác AECD là hình thoi. b) Chứng minh tứ giác BEDC là hình bình hành. c) Chứng minh tam giác CEB cân. d) Giả sử tam giác CEB đều. Chứng minh tứ giác ABCD là hình thang cân
Cho hình thang ABCD ( A B / / C D ) c ó A B = A D = C D / 2 . Gọi M là trung điểm của CD và H là giao điểm của AM và BD.
a) Chứng minh tứ giác ABMD là hình thoi
b) Chứng minh BD ⊥ BC
c) Chứng minh ΔAHD và ΔCBD đồng dạng
d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.
1.Cho hình thang ABCD (AB song song với CD), M là trung điểm BC. Cho biết DM là phân giác của góc D. Chứng minh AM là phân giác của góc A.
2. Cho tứ giác ABCD có AD=AB=BC và góc A+góc C= 180 độ. Chứng minh rằng:
a)DB là phân giác của góc D
b)ABCD là hình thanh cân
cho tam giác ABC vuông tại A có gocsBAC = 60 độ, kẻ tia à song song với BC. Trên à lấy điểm D sao cho AD = DC.
a, Tính các góc BAD và DAC
b, chứng minh tứ giác ABCD là hình thang cân
c, Gọi E là trung điểm của BC. Chứng minh tứ giác ADBE là hình thoi
d, Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED.
Cho hình thang ABCD (AB // CD) có AB = AD = CD/2. Gọi M là trung điểm của CD và H là giao điểm của AM và BD. a) Chứng minh tứ giác ABMD là hình thoi b) Chứng minh BD ⊥ BC c) Chứng minh ΔAHD và ΔCBD đồng dạng d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Bài 1 : Cho hình thang ABCD ( AB // CD ) có góc A bằng 3 lần góc B ; góc C = 160độ.Tính các góc còn lại
Bài 2 : Cho hình thang cân ABCD ( AB// CD ) có AD = BC = x cm ( x chưa biết ) và góc ADC bằng 60độ . DB là đường phân giác góc ADC
a) Tính góc DAB và góc DBC
b) Tính cạnh AB và CD theo x
c) Gọi M là trung điểm CD . Chứng minh tam giác AMD đều
d) Chứng minh rằng MA là đường trung trực của BD