Tìm k để phương trình \(\left(k^2-k\right)x^2+2kx+1=0\) có nghiệm .
Tìm m để phương trình sau có nghiệm kép.
a \(x^2-\left(k+1\right)x+2+k=0\)
b \(x^2+2\left(k-1\right)x+k+9=0\)
\(a,< =>\Delta=0\)
\(=>[-\left(k+1\right)]^2-4\left(2+k\right)=0\)
\(< =>k^2+2k+1-8-4k=0\)
\(< =>k^2-2k-7=0\)
\(\Delta1=\left(-2\right)^2-4\left(-7\right)=32>0\)
\(=>\left[{}\begin{matrix}k1=\dfrac{2+\sqrt{32}}{2}\\k2=\dfrac{2-\sqrt{32}}{2}\end{matrix}\right.\)
b,\(< =>\Delta'=0< =>\left(k-1\right)^2-\left(k+9\right)=0\)
\(< =>k^2-2k+1-k-9=0< =>k^2-3k-8=0\)
\(\Delta=\left(-3\right)^2-4\left(-8\right)=41>0\)
\(=>\left[{}\begin{matrix}k1=\dfrac{3+\sqrt{41}}{2}\\k2=\dfrac{3-\sqrt{41}}{2}\end{matrix}\right.\)
a) \(\text{Δ}=\left[-\left(k+1\right)\right]^2-4\cdot1\cdot\left(k+2\right)\)
\(=k^2+2k+1-4k-8\)
\(=k^2-2k-7\)
Để phương trình có nghiệm kép thì Δ=0
\(\Leftrightarrow k^2-2k-7=0\)(1)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-7\right)=4+28=32\)
Vì Δ>0 nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}k_1=\dfrac{2-4\sqrt{2}}{2}=1-2\sqrt{2}\\k_2=\dfrac{2+4\sqrt{2}}{2}=1+2\sqrt{2}\end{matrix}\right.\)
tìm k để phương trình x4-2kx2+k2-3=0 có đúng 3 nghiệm phân biệt
mình làm luôn 4 nghiệm nhé-đổi k thành m cho dễ nhé
Pt trở thành: t² + 2mt + 4 = 0 (*).
Pt đã cho có 4 nghiệm phân biệt <=> pt (*) có 2 nghiệm phân biệt dương. => xảy ra đồng thời: delta’(t) > 0; S = x1 + x2 > 0; p = x1x2 > 0 <=> m² - 4 > 0; -2m > 0; 4 > 0 ( theo Vi-et)
=> m < -2.
=> pt đã cho có nghiệm x1,2 = +- căn t1; x3,4 = +- căn t2
=> x1^4 = x2^4 = t1²; x3^4 = x4^4 = t2²
=> x1^4 + x2^4 + x3^4 + x4^4 = 2(t1² + t2²) = 32 => t1² + t2² = 16.
<=> (t1 + t2)² - 2t1t2 = 16 <=> (-2m)² - 2.4 = 16 <=> 4m² - 4 = 16
<=> m² = 6, mà m < -2 => m = -(căn 6).
vậy với m = -(căn 6) thì pt đã cho có 4 nghiệm phân biệt x1 ,x2, x3, x4 thỏa mãn x1^4 + x2^4 + x3^4 + x4^4 = 32.
mik lm 4 nghiệm nhé-đổi k thành m nữa
Pt trở thành: t² + 2mt + 4 = 0 (*).
Pt đã cho có 4 nghiệm phân biệt <=> pt (*) có 2 nghiệm phân biệt dương. => xảy ra đồng thời: delta’(t) > 0; S = x1 + x2 > 0; p = x1x2 > 0 <=> m² - 4 > 0; -2m > 0; 4 > 0 ( theo Vi-et)
=> m < -2.
=> pt đã cho có nghiệm x1,2 = +- căn t1; x3,4 = +- căn t2
=> x1^4 = x2^4 = t1²; x3^4 = x4^4 = t2²
=> x1^4 + x2^4 + x3^4 + x4^4 = 2(t1² + t2²) = 32 => t1² + t2² = 16.
<=> (t1 + t2)² - 2t1t2 = 16 <=> (-2m)² - 2.4 = 16 <=> 4m² - 4 = 16
<=> m² = 6, mà m < -2 => m = -(căn 6).
vậy với m = -(căn 6) thì pt đã cho có 4 nghiệm phân biệt x1 ,x2, x3, x4 thỏa mãn x1^4 + x2^4 + x3^4 + x4^4 = 32.
\(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)
a. Chứng minh phương trình luôn có 2 nghiệm phân biệt
b.Tìm k để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(|x_1|+|x_2|=4\)
a/ Xét phương trình : \(x^2-2\left(k-1\right)x+2\left(k-2\right)=0\)
Ta có :
\(\Delta'=b'^2-ac=\left(k-1\right)^2-2\left(k-2\right)=k^2-2k+1-2k+4=k^2-4k+5=\left(k-2\right)^2+1>0\forall k\)
\(\Leftrightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi k
b/ Theo định lí Vi - ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2\left(k-1\right)\\x_1.x_2=\dfrac{c}{a}=2\left(k-2\right)\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=4\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=16\)
\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow x_1^2+x_2^2+4\left(k-2\right)=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+4k-8=16\)
\(\Leftrightarrow4\left(k-1\right)^2-4\left(k-2\right)+4k-8=16\)
\(\Leftrightarrow4k^2-8k+4-4k+8+4k-8=0\)
\(\Leftrightarrow k=\pm3\)
Vậy....
Gọi \(x_1;x_2\)là hai nghiệm của phương trình : \(x^2-2kx-\left(k-1\right)\left(k-3\right)=0\).Khi đó \(\frac{1}{4}\left(x_1+x_2\right)^2+x_1.x_2-2\left(x_1-x_2\right)=....\)
Cho phương trình ẩn x có dạng: 9x2 - 25 - k2 - 2kx = 0
a) GIẢI phương trình với k = 0
b) Tìm các giá trị của k sao cho phương trình nhận x = -1 làm nghiệm.
k=0 => \(9x^2-25=0\)
\(\Leftrightarrow x^2=\frac{25}{9}\Leftrightarrow x=\pm\frac{5}{3}\)
x=-1 => 9-25-k2=2k=0
=> k2-2k+16=0
=> không có giá trị k thỏa mãn
Gọi \(x_1,x_2\)là hai nghiệm của phương trình \(x^2-2kx-\left(k-1\right)\left(k-3\right)=0\)
Khi đó giá trị của \(\frac{1}{4}\left(x_1+x_2\right)^2+x_1.x_2-2\left(x_1+x_2\right)\)
Bài 1: Cho phương trình \(^{x^2-2\left(k-1\right)x+2k-5=0}\)
a) Giải phương trình với k = 1
b) Tìm k để phương trình có 2 nghiệm x1, x2 thỏa mãn hệ thức \(\left|x_1\right|-\left|x_2\right|=\sqrt{14}\)
Bài 2: Cho phương trình \(x^2-5x+m=0\)(m là tham số)
a) Giải phương trình với m = 4
b) Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\left|x_1-x_2\right|=3\)
Cho phương trình 9x2 - 25 - k2 - 2kx = 0. Tìm các giá trị của k sao cho phương trình nhận x = -1 làm nghiệm
x=-1
=>\(PT=9-25-k^2+2k=0=>k^2-2k+16=0\)
=> o có giá trị k thỏa mãn
Chỉ vậy thôi à, còn chi tiết hơn ko, cái này tớ cũng giải được nhưng mà thắc mắc cái phần vì sao k2 - 2k + 16 lại ko có giá trị k thỏa mãn
có thật là bạn làm đc ko
\(k^2-2k\ge0\)
@@. Chắc là làm đc
Cho phương trình ẩn x : 9x2 – 25 – k2 – 2kx = 0
a) Giải phương trình với k = 0
b) Tìm các giá trị của k sao cho phương trình nhận x = - 1 làm nghiệm số.
a) k = 0 thì pt trở thành \(9x^2-25=0\Leftrightarrow x^2=\frac{25}{9}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{5}{3}}\)
b) Thay x = -1 vào pt
\(9-25-k^2+2k=0\Leftrightarrow k^2-2k=-16\)
Ta có \(\Delta=2^2-4.16< 0\)
Vậy ko có k để x=-1 là nghiệm