Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran minh
Xem chi tiết
Xem chi tiết
Nguyễn Kiều Trang
Xem chi tiết
Tran minh
21 tháng 9 2017 lúc 19:50

Ai trả lời câu này đi để mình làm vs

Nguyễn Bích Ngọc
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 12 2018 lúc 17:27

Đỗ Bảo Phát
Xem chi tiết
Võ Khánh Nguyên
Xem chi tiết
Đỗ Thị Vân Nga
26 tháng 7 2016 lúc 8:18

bạn vẽ hình đi để mình thử giải xem đúng không

Trần Việt Linh
26 tháng 7 2016 lúc 8:36

Hỏi đáp Toán

Võ Khánh Nguyên
26 tháng 7 2016 lúc 8:08
VẼ HÌNH VÀ VIẾT GIẢ THUYẾT, KẾT LUẬN NỮA NHA !vui

 

Lê thị thu trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2021 lúc 18:55

a) Xét tứ giác ADME có 

ME//AD(gt)

MD//AE(gt)

Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))

nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ADME là hình chữ nhật(cmt)

nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)

mà ED=5cm(gt)

nên AM=5cm

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)

c) Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(gt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(gt)

Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

Ta có: ΔAHB vuông tại H(AH⊥BC tại H)

mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên HD=AD

Ta có: ΔAHC vuông tại H(AH⊥BC tại H)

mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)

nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên HE=AE

Xét ΔEAD và ΔEHD có 

EA=EH(cmt)

ED chung

AD=HD(cmt)

Do đó: ΔEAD=ΔEHD(c-c-c)

\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)

mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)

nên \(\widehat{EHD}=90^0\)

hay HD⊥HE(đpcm)

Đặng Thùy An
Xem chi tiết