cho tam giác ABC phân giác của B cắt cạnh AC tại D. Qua D vẽ 1 đường thẳng cắt cạnh AB tại E sao cho EDB = EBD . Qua E vẽ 1 đường thẳng song song BD cắt cạnh AC tại F
a C/m ED song song BC
b C/m EF là tia phân giác của AED
Cho tam giác ABC. Vẽ tia phân giác của B cắt AC tại D. Qua P, kẻ 1 đường thẳng cắt AB tại Esao cho góc EDB = góc EBD. Qua E kẻ đường thẳng song song BD. Đường thẳng này cắt AC tại F. Hỏi ED có song song vs BC không Vì sao, chứng minh EF là tia phân giác góc AED
Cho tam giác ABC, phân giác góc B cắt cạnh AC tại B. Qua A kẻ đường thẳng cắt cạnh AB tại E sao cho góc EDB = góc EBD . Qua E kẻ đường thẳng song song với BD đường thẳng này cắt cạnh AC tại F.
a) Chứng tỏ ED song song với BC
b) Chứng tỏ EF là phân giác của góc AED
CHo tam giác ABC. Phân giác của góc B cắt cạnh AC tại điểm D. Qua D kẻ một đường thẳng cắt cạnh AB tại điểm E sao cho góc EBD=EBD. Qua E kẻ đường thẳng song song với BD, đường thẳng này cắt cạnh AC tại điểm F.
a) Chứng minh ED // BC
b) Chứng minh EF là tia phân giác của góc AED
Cho tam giác ABC vẽ tia phân giác của góc ABC cắt cạnh AC tại D. Qua D vẽ đường thẳng song song với AB cắt BC tại E. Qua E vẽ đường thẳng song song với BD cắt AC tại F. Chứng tỏ: EF là tia phân giác của góc DEC
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Lấy G thuộc cạnh AC sao cho A G = 1 3 A C . Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD.
Chứng minh:
a) G là trọng tâm tam giác BCD;
b) ∆ B E D = ∆ F D E , từ đó suy ra EC = DF;
c) ∆ D M F = ∆ C M E ;
d) B, G, M thẳng hàng.
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Lấy G thuộc cạnh AC sao cho AG = AC. Tia DG cắt BC tại E. Qua E vẽ đường thẳng song song với BD, qua D vẽ đường thẳng song song với BC, hai đường thẳng này cắt nhau tại F. Gọi M là giao điểm của EF và CD. Chứng minh: a) G là trọng tâm tam giác BCD. b) , từ đó suy ra EC = DF
Cho tam giác ABC, phân giác của góc B cắt cạnh AC tại D. Qua D kẻ 1 đường thẳng cắt AB tại E sao cho góc EDB = EBD. Qua E kẻ đường thẳng song song BD đường này cắt AC tại F.
a) Cminh ED song song BC
b) Cminh EF là tia phân giác của góc AED
CÁC BẠN VÀ THẦY CÔ HÃY GIÚP MÌNH VỚI NHÉ ! TỐI NAY MÌNH HỌC RỒI ĐÓ !
bạn vẽ hình đi để mình thử giải xem đúng không
Cho tam giác ABC vuông tại A (AB bé thua AC ).Vẽ đường cao AH và đường trung tuyến AM của tam giác ABC .Qua M ,vẽ đường thẳng song song cạnh AC cắt cạnh AB tại D và vẽ đường thẳng song song cạnh AB cắt cạnh AC tại E
a) chứng minh tứ giác ADME là hình chữ nhật
b) biết AH =4,8cm,DE =5cm.Tính diện tích tam giác ABC
c) chứng minh HD vuông gốc với HE
a) Xét tứ giác ADME có
ME//AD(gt)
MD//AE(gt)
Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))
nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ADME là hình chữ nhật(cmt)
nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)
mà ED=5cm(gt)
nên AM=5cm
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)
Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)
c) Xét ΔABC có
M là trung điểm của BC(gt)
ME//AB(gt)
Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
MD//AC(gt)
Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
Ta có: ΔAHB vuông tại H(AH⊥BC tại H)
mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)
nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
nên HD=AD
Ta có: ΔAHC vuông tại H(AH⊥BC tại H)
mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)
nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
nên HE=AE
Xét ΔEAD và ΔEHD có
EA=EH(cmt)
ED chung
AD=HD(cmt)
Do đó: ΔEAD=ΔEHD(c-c-c)
⇒\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)
mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)
nên \(\widehat{EHD}=90^0\)
hay HD⊥HE(đpcm)
Cho tam giác ABC vuông tại A,có AB < AC. Vẽ AH vuông góc BC tại H.Trên tia đối của tia HA lấy điểm D sao cho HD=HA
a)C/m tam giác HCD=tam giác HCA
b)c/m BD vuông góc DC
c) Qua điểm A vẽ đường thẳng song song với BC,qua điểm c vẽ đường thẳng song song với cạnh AB,hai đường thẳng này cắt nhau tại E . C/m AE=BC
d) Gọi M là trung điểm cạnh HC, qua M vẽ đường thẳng vuông góc với cạnh HC cắt cạnh DC tại I .Từ H vẽ đường thẳng vuông góc với cạnh AB tại k. C/m K,H,I thẳng hàng