Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
miko hậu đậu
Xem chi tiết
Quỳnh Giang Bùi
31 tháng 3 2015 lúc 20:21

S=1/20+(1/21+1/22-1)+(1/22+...+1/23-1)+...+(1/299+...+1/2100-1)         (100 cặp)

S<1/20.20+1/21.21+1/22.22+...+1/299.299

S<1+1+1+...+1 (100 số 1)

S<100.1

S<100 (ĐPCM)

TTTT
Xem chi tiết
Hung nguyen
31 tháng 7 2018 lúc 8:42

Ta có:

\(2\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{2}{\sqrt{n+1}+\sqrt{n}}< \dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)

\(\Rightarrow S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)=2\left(\sqrt{101}-1\right)>18\)

\(2\left(\sqrt{n}-\sqrt{n-1}\right)=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)}=\dfrac{2}{\sqrt{n}+\sqrt{n-1}}>\dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)

\(\Rightarrow S< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)=1+2\left(\sqrt{100}-1\right)=19\)

Đinh Ngọc Mai
Xem chi tiết
June
Xem chi tiết
chuche
21 tháng 2 2023 lúc 8:37

Ta có : 

`5S=5(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`

`5S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)`

`=>5S-S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)-(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`

`4S=1/5+1/(5^2)+1/(5^3)+1/(5^4)+...+1/(5^99) -99/(5^100)`

`20S=5(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`

`20S=1+1/5+1/(5^2)+....+1/(5^98)-99/(5^99)`

`=>20S-4S=(1+1/5+1/(5^2)+...+1/(5^98)-99/(5^99))-(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`

`=>16S=1-99/(5^99)-1/(5^99)-99/(5^100)`

Vì `-99/(5^99)-1/(5^99)-99/(5^100)<0=>1-99/(5^99)-1/(5^99)-99/(5^100)<1`

`=>S<1/16`

Dragon Ball
Xem chi tiết
007
Xem chi tiết
GoKu Đại Chiến Super Man
26 tháng 1 2016 lúc 14:22

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

007
28 tháng 1 2016 lúc 21:42

ghi ra rồi tui bấm

khôn vừa vừa thôi chớ

Cô Nàng Họ Dương
Xem chi tiết
Nguyễn Tuấn Khải
Xem chi tiết
Phạm Hồ Quỳnh Nhi
Xem chi tiết
Phan Bá Cường
8 tháng 9 2015 lúc 21:49

S = 2^1 + 2^2 + 2^3 +...+ 2^100

S = (2^1 + 2^2 +2^3 + 2^4) + ... + (2^97 + 2^98 + 2^99 + 2^100)

S = 2(1 + 2 + 2^2 + 2^3 ) + ...+ 2^97( 1 + 2 + 2^2 + 2^3)

S = 2x15 +...+ 2^97x15

S = 15( 2...2^97) chia hết cho 15

Do 15 chia hết cho 3 mà S chia hết cho 15

=> S chia hết cho 3 

Vậy s chia hết cho 3 và 15