S=1+1/2^2+1/3^2+...+1/100^2
CMR S<2
Câu 2: CMR S<1/4 với S=1/4^2+1/6^2+...+1/(2n)^2
S=1+1/2+1/3+.....+1/2100-1
CMR: S<100
S=1/20+(1/21+1/22-1)+(1/22+...+1/23-1)+...+(1/299+...+1/2100-1) (100 cặp)
S<1/20.20+1/21.21+1/22.22+...+1/299.299
S<1+1+1+...+1 (100 số 1)
S<100.1
S<100 (ĐPCM)
Cho : S=1+1/(2^1/2)+1/(3^1/2)+...+1/(100^1/2)
CMR:18<S<19
Ta có:
\(2\left(\sqrt{n+1}-\sqrt{n}\right)=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{2}{\sqrt{n+1}+\sqrt{n}}< \dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)
\(\Rightarrow S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)=2\left(\sqrt{101}-1\right)>18\)
\(2\left(\sqrt{n}-\sqrt{n-1}\right)=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)}=\dfrac{2}{\sqrt{n}+\sqrt{n-1}}>\dfrac{2}{2\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)
\(\Rightarrow S< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)=1+2\left(\sqrt{100}-1\right)=19\)
Cmr: S= 1+1/2^2+1/3^2+1/4^2+...+1/100^2>3/2
Cho `S=1/(5^2) + 2/(5^3) + 3/(5^4) + ... + 99/(5^100)` CMR `S<1/16`
Ta có :
`5S=5(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`
`5S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)`
`=>5S-S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)-(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`
`4S=1/5+1/(5^2)+1/(5^3)+1/(5^4)+...+1/(5^99) -99/(5^100)`
`20S=5(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`
`20S=1+1/5+1/(5^2)+....+1/(5^98)-99/(5^99)`
`=>20S-4S=(1+1/5+1/(5^2)+...+1/(5^98)-99/(5^99))-(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`
`=>16S=1-99/(5^99)-1/(5^99)-99/(5^100)`
Vì `-99/(5^99)-1/(5^99)-99/(5^100)<0=>1-99/(5^99)-1/(5^99)-99/(5^100)<1`
`=>S<1/16`
CMR : S < 3 biết : 1 + 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2
S=1/5^2 - 2/5^3 + 3/5^4 -...+99/5^100-100/5^101
CMR S<1/3^6
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
CMR
S= 1/2 mũ 2 +1/3 mũ 2 + 1/4 mũ 2 +...... + 1/100 mũ 2 <1
S= 1 - 3 + 3^2 - 3^3 + ... - 3^99
a) CMR S là B(20)
b) Tính S, CMR: 3^100 chia 4 dư 1
Cho S = 21+ 22+23+..... + 2100
CMR S:3 và S: 15
S = 2^1 + 2^2 + 2^3 +...+ 2^100
S = (2^1 + 2^2 +2^3 + 2^4) + ... + (2^97 + 2^98 + 2^99 + 2^100)
S = 2(1 + 2 + 2^2 + 2^3 ) + ...+ 2^97( 1 + 2 + 2^2 + 2^3)
S = 2x15 +...+ 2^97x15
S = 15( 2...2^97) chia hết cho 15
Do 15 chia hết cho 3 mà S chia hết cho 15
=> S chia hết cho 3
Vậy s chia hết cho 3 và 15