Tìm n thuộc N sao cho
a) \(8⋮\left(n-2\right)\) b) \(\left(2n+1\right)⋮\left(6-n\right)\)
Chứng minh rằng với mọi n thuộc Z thì :
a) \(\left(n^2+3n-1\right).\left(n+2\right)-n^3+2⋮5\)
b) \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\)
c) \(\left(2n-1\right).3-\left(2n-1\right)⋮8\)
d) \(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Chứng minh rằng n thuộc Z
\(a,\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
\(b,\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)
\(=\left(2n-1\right).4.n\left(n-1\right)\)
\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)
\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)
\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)
cho f(x)=(x2+x+1)2+1 với mọi x thuộc N.
a)tìm x để f(x) là số tự nhiên
b)thu gọn:
Pn=\(\frac{f\left(1\right).f\left(3\right).....f\left(2n-1\right)}{f\left(2\right).f\left(4\right).....f\left(2n\right)}\) với n thuộc N*
Tìm \(n\in N\), sao cho :
\(a,\left(2n^2-3n+1\right)⋮\left(n-1\right)\)
\(b,\left(2n^2-3n+1\right)⋮\left(2n-1\right)\)
a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)
\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)
b.Tách tương tự nha
\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)
vậy với mọi x thuộc N đều t/m
b) tương tự nha
CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
Bài 1, Tìm số nguyên n, sao cho:
a)\(\left(n+5\right)⋮\left(n-4\right)\)
b) \(2n⋮\left(n-1\right)\)
c) \(\left(3n-8\right)⋮\left(n-4\right)\)
d) \(\left(2n+1\right)⋮\left(n-5\right)\)
b)
Để \(2n⋮\left(n-1\right)\)
\(\Rightarrow2.\left(n-1\right)+2⋮\left(n-1\right)\)
\(\Rightarrow2⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\end{matrix}\right.\)
Vậy n=2;n=3 thì \(2n⋮\left(n-1\right)\)
c)
Để \(\left(3n-8\right)⋮\left(n-4\right)\)
\(\Rightarrow3.\left(n-4\right)+4⋮\left(n-4\right)\)
\(\Rightarrow4⋮\left(n-4\right)\)
\(\Rightarrow\left(n-4\right)\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-4=1\Rightarrow n=5\\n-4=2\Rightarrow n=6\\n-4=4\Rightarrow n=8\end{matrix}\right.\)
Vậy với .....................
d)
Để \(\left(2n+1\right)⋮\left(n-5\right)\)
\(\Rightarrow2.\left(n-5\right)+11⋮\left(n-5\right)\)
\(\Rightarrow11⋮\left(n-5\right)\)
\(\Rightarrow\left(n-5\right)\inƯ\left(11\right)=\left\{1;11\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-5=1\Rightarrow n=6\\n-5=11\Rightarrow n=16\end{matrix}\right.\)
Vậy với ........................................
\(1,\left(n+2\right)⋮\left(n+1\right)\)
2 ,\(8⋮\left(n-2\right)\)
3,\(\left(2n+1\right)⋮\left(6-n\right)\)
4;\(3n⋮\left(n-1\right)\)
5, \(\left(3n+5\right)⋮\left(2n+1\right)\)
6, \(\left(3n+1\right)⋮\left(2n-1\right)\)
Tìm n thuộc N, biết: \(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}\frac{1}{2^n}\)
Cứu mình với!
a/ Cho \(\frac{a}{b}=\frac{60}{108}\)sao cho [a;b] = 180. Tìm phân số đó.
b/ Chứng minh \(\frac{1.3.5.....\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....\left(2n\right)}=\frac{1}{2^n}\)(n \(\in\)N*)
Các bạn giải từng câu một cũng dc nhé