Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Nguyễn Lê Na
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Minh Hoàng
Xem chi tiết
Nguyễn Phú Trọng
23 tháng 11 2017 lúc 20:10

Theo tính chất góc ngoài tam giác = tổng 2 góc trong không kề với nó. 

Ta có 

( B + C ):( A + C ):( A + B ) = 4:5:6 

=> ( B + C )/4 = ( A + C )/5 = ( A + B )/6 

Theo tính chất tỉ lệ thức kết hợp với tổng 3 góc trong tam giác = 360 độ. 

=> ( B + C )/4 = ( B + C + A + C + A + B )/( 4 + 5 + 6 ) = 360/15 = 24 

=> B + C = 96 (1) 

Tương tự ta có 

A + C = 120 (2) 

A + B = 144 (3) 

Kết hợp (1);(2);(3) ta có 

A = 84; B = 60; C = 36 

=> A:B:C = 84:60:36 = 7:5:3

ĂN CỨT CHÓ
28 tháng 11 2019 lúc 21:01

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Khách vãng lai đã xóa
ngo thu trang
Xem chi tiết
Gin Pu
Xem chi tiết
Miko
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 15:03

Gọi số đo các góc ngoài tại 3 đỉnh A,B,C lần lượt là a,b,c

Theo đề, ta có: a/4=b/5=c/6 và a+b+c=180

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{4+5+6}=\dfrac{180}{15}=12\)

Do đó: a=48; b=60; c=72

=>\(\widehat{A}=132^0;\widehat{B}=120^0;\widehat{C}=108^0\)

=>Ba góc trong lần lượt tỉ lệ với 11;10;9

Cô Bé Song Ngư
Xem chi tiết
Satoh Kaori
Xem chi tiết
Adam Trần
Xem chi tiết
Vương Thị Diễm Quỳnh
1 tháng 11 2015 lúc 11:14

a)

vì A;B ;C tỉ lệ với 1;2;6

=>A/1=B/2=C/6

mà A+B+C=180 độ (tổng 3 g của 1 tg)

áp dụng tc dãy tỉ số = nhau ta có:

A/1=B/2=C/6=A+B+C/1+2+6=180/9=20 độ

=>A/1=20=>a=20 độ

=>B/2=20=>B=40 độ

=>C/6=20=>C=120độ

Duki Ta
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2021 lúc 20:05

c) Xét ΔABC có 

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)

\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)

Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)

nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)

mà \(\widehat{B}+\widehat{C}=140^0\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)

Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)

mà cạnh đối diện với \(\widehat{A}\) là cạnh BC

cạnh đối diện với \(\widehat{B}\) là cạnh AC

và cạnh đối diện với \(\widehat{C}\) là cạnh AB

nên BC<AC<AB