Cho tam giác ABC. Có góc ngoài của tam giác tại A, B, C tỉ lệ với 4; 5; 6. Các góc trong tương ứng tỉ lệ với các sộ nào ?
Cho tam giác ABC có các góc ngoài của tam giác tại đỉnh A;B;C tỉ lệ với 4;5;6. Hỏi các góc trong của tam giác tỉ lệ với các số nào?
Cho tam giác ABC có các góc ngoài của tam giác tại A, B, C tỉ lệ với
4; 5; 6. Hỏi các góc trong tương ứng tỉ lệ với các số nào?
Cho tam giác ABC có các góc ngoài đỉnh A, B, C tỉ lệ với 4, 5, 6. Hỏi các góc trong của tam giác ABC tỉ lệ với những số nào?
Theo tính chất góc ngoài tam giác = tổng 2 góc trong không kề với nó.
Ta có
( B + C ):( A + C ):( A + B ) = 4:5:6
=> ( B + C )/4 = ( A + C )/5 = ( A + B )/6
Theo tính chất tỉ lệ thức kết hợp với tổng 3 góc trong tam giác = 360 độ.
=> ( B + C )/4 = ( B + C + A + C + A + B )/( 4 + 5 + 6 ) = 360/15 = 24
=> B + C = 96 (1)
Tương tự ta có
A + C = 120 (2)
A + B = 144 (3)
Kết hợp (1);(2);(3) ta có
A = 84; B = 60; C = 36
=> A:B:C = 84:60:36 = 7:5:3
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Cho tam giác ABC, các góc ngoài của tam giác ABC tại A, B, C tỉ lệ với 4;5;6. các góc trong tương ứng tỉ lệ với các số nào
Cho tam giác ABC có góc ngoài của tam giác tại các đỉnh A,B,C tỉ lệ với 4:5:6. Các góc trong tương ứng với các số nào
Cho tam giác ABC có các góc ngoài của tam giác tại ABC tỉ lệ với 4 ; 5 ; 6. Các góc trong tương ứng tỉ lệ với các số nào ?
Gọi số đo các góc ngoài tại 3 đỉnh A,B,C lần lượt là a,b,c
Theo đề, ta có: a/4=b/5=c/6 và a+b+c=180
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{4+5+6}=\dfrac{180}{15}=12\)
Do đó: a=48; b=60; c=72
=>\(\widehat{A}=132^0;\widehat{B}=120^0;\widehat{C}=108^0\)
=>Ba góc trong lần lượt tỉ lệ với 11;10;9
1 , Cho tam giác ABC biết A = B = C . Tính các góc của tam giác
2, Cho tam giác ABC có A = 50 độ ; B và C tỉ lệ với 2 và 3 . Tính các góc ngoài tại B và C
Cho tam giác ABC có các góc ngoài tại đỉnh A,B,C tỉ lệ với 4:5:6.
A, B, C tỉ lệ với những số nào
Cho tam giác ABC biết góc A , góc B, góc C tỉ lệ với 1, 2 ,6
a) tính các óc của tam giác ABC
b) phân giác góc ngoài đỉnh C của tam giác ABC cắt AB tại đỉnh E . Tính AEC
a)
vì A;B ;C tỉ lệ với 1;2;6
=>A/1=B/2=C/6
mà A+B+C=180 độ (tổng 3 g của 1 tg)
áp dụng tc dãy tỉ số = nhau ta có:
A/1=B/2=C/6=A+B+C/1+2+6=180/9=20 độ
=>A/1=20=>a=20 độ
=>B/2=20=>B=40 độ
=>C/6=20=>C=120độ
So sánh các cạnh của tam giác ABC biết A) góc ngoài của đỉnh góc A =120° ; góc B = 50° B) tam giác ABC cân tại A ,A>60° C) A=40° và số đo góc B và C tỉ lệ với 3 ; 4
c) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)
Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)
nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)
mà \(\widehat{B}+\widehat{C}=140^0\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)
Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)
mà cạnh đối diện với \(\widehat{A}\) là cạnh BC
cạnh đối diện với \(\widehat{B}\) là cạnh AC
và cạnh đối diện với \(\widehat{C}\) là cạnh AB
nên BC<AC<AB