x10= 1x
2x - 15 = 17
tìm x
Tìm x ∈ N biết:
a) x 10 = 1 x
b) x 10 = x
c) ( 2 x - 15 ) 5 = ( 2 x - 15 ) 3
Tìm xϵN biết:
A)2x-15=17
B)(2x-11)5=24.32+99
C)x10=1x
a, 2\(^x\) - 15 = 17
2\(^x\) = 17 + 15
2\(^x\) = 32
2\(^x\) = 25
\(x\) = 5
b, (2\(x\) - 11)5 = 24.32 + 99
(2\(x\) - 11)5 = 16.9 + 99
(2\(x\) - 11)5 = 144 + 99
(2\(x\) - 11)5 = 243
(2\(x\) - 11)5 = 35
2\(x\) - 11 = 3
2\(x\) = 3 + 11
2\(x\) = 14
\(x\) = 14: 2
\(x\) = 7
c, \(x^{10}\) = 1\(^x\)
\(x^{10}\) = 1
\(x^{10}\) = 110
\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(x\) \(\in\) { -1; 1}
A) \(...\Rightarrow2^x=32=2^5\Rightarrow x=5\)
B) \(...\Rightarrow\left(2x-11\right)^5=243=3^5\)
\(\Rightarrow2x-11=5\Rightarrow2x=16\Rightarrow x=8\)
C) \(...\Rightarrow x^{10}=1=x^0\Rightarrow x=1\)
Tìm x ∈ N biết:
a, x 10 = 1 x
b, x 10 = x
c, 2 x - 15 5 = 2 x - 15 3
a) TH1: x = 0
x 10 = 1 x ⇔ 0 10 = 1 0
ó 0 = 1 vô lí => x = 0 không thỏa mãn.
TH2: x = 1
x 10 = 1 x ⇔ 1 10 = 1 1
ó 1 = 1 => x = 1 thỏa mãn.
TH3: x > 1
x 10 = 1 x ⇔ x 10 = 1
Mà x > 1 => x 10 > 1 => không có giá trị của x.
Vậy x = 1
b) Tương tự a). x = 0 hoặc x = 1.
c) Lũy thừa có cùng cơ số mà khác số mũ thì cơ số bằng 0 hoặc bằng 1.
TH1: Cơ số bằng 0.
=>2x – 15 = 0
ó x = 15 2 (do x ∈ N nên không thỏa mãn).
TH2: Cơ số bằng 1.
=>2x – 15 = 1
ó x = 8 (thỏa mãn)
Vậy x = 8.
1:tìm x thuộc N biết
a.2x-15=17
b.x10=1x
c.3n:9=27
Tìm đạo hàm của hàm số sau: y = x + 1 x + 0 , 1 . x 10
Tìm x:
a)(x-3)+(x-2)+(x-1)+...+10+11
b)x10=1x
Giúp mk vs
Tìm số hạng không chứa x trong khai triển nhị thức Newton của P: P = x + 1 x 2 3 − x + 1 3 − x − 1 x − x 10 với x > 0 , x ≠ 1.
A. 200.
B. 100.
C. 210.
D. 160.
Cho biểu thức P = x + 1 x 2 3 - x + 1 3 - x - 1 x - x 10 với x>0, x ≠ 1. Tìm số hạng không chứa x trong khai triển nhị thức Newton của P.
A. 200
B. 100
C. 210
D. 160
tìm x thuộc n biết
a.x^10=1x
b,x^10=x
c. (2x-15)^5=(2x-15)^3
a, 2x . 4 = 128
b, x15 = x 1
c, (2x + 1)3 = 125
d, (x – 5)4 = (x - 5)6
e, x10 = x
f, (2x -15)5 = (2x -15)3
a) 2x . 4 = 128
<=> 2x = 32
<=> 2x = 25
<=> x = 5
b) x15 = x1
<=> x15 - x = 0
<=> x(x14 - 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{14}=1^{14}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
c) (2x + 1)3 = 125
<=> (2x + 1)3 = 53
<=> 2x + 1 = 5
<=> 2x = 4
<=> x = 2
d) (x - 5)4 = (x - 5)6
<=> (x - 5)6 - (x - 5)4 = 0
<=> (x - 5)4[(x - 5)2 - 1] = 0
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
Khi (x - 5)4 = 0 => x - 5 = 0 => x = 5
Khi (x - 5)2 - 1 = 0 <=> (x - 5)2 = 12 <=> \(\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
a, 2x . 4 = 128
=> 2x = 128 : 4 = 32
=> x = 32 : 2 = 16
Vậy x = 16
b, x15 = x 1 => Sai đề
c, (2x + 1)3 = 125
=> ( 2x + 1 ) = 53
=> 2x + 1 = 5
=> 2x = 5 - 1
=> 2x = 4
=> x = 4 : 2
=> x = 2