Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 11 2018 lúc 10:34

Cách 1: Chứng minh quy nạp.

Đặt Un = n3 + 11n

+ Với n = 1 ⇒ U1 = 12 chia hết 6

+ giả sử đúng với n = k ≥ 1 ta có:

Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)

Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6

Thật vậy ta có:

Uk+1 = (k + 1)3 + 11(k +1)

         = k3 + 3k2 + 3k + 1 + 11k + 11

         = (k3 + 11k) + 3k2 + 3k + 12

 

         = Uk + 3(k2 + k + 4)

Mà: Uk ⋮ 6 (giả thiết quy nạp)

3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)

⇒ Uk + 1 ⋮ 6.

Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.

Cách 2: Chứng minh trực tiếp.

Có: n3 + 11n

= n3 – n + 12n

= n(n2 – 1) + 12n

= n(n – 1)(n + 1) + 12n.

Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3

⇒ n(n – 1)(n + 1) ⋮ 6.

Lại có: 12n ⋮ 6

⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.

Anh Đỗ Ngọc
7 tháng 3 2021 lúc 14:49

n^3+11n chia hết cho 6

n^3+11n=n^3-n+12n

=(n-1)n(n+1)+12n

vậy n^3+11n luôn chia hết cho 6, với mọi n

Khách vãng lai đã xóa
Đặng Thị Thảo Trâm
Xem chi tiết
Quynh Hoa
31 tháng 1 2020 lúc 20:05

​N^3+11n=n^3-n+12n

=n(n^2-1)+12n

=(n-1)n (n+1) +12n

Vì n là số tự nhiên nên => (n-1)n (n+1) là tích 3 số nguyên liên tiếp => chia hết cho 6

12 chia hết cho 6 nên 12n chia hết cho 6

=> (n-1)n (n+1)+12n chia hết cho 6

=> n^+11n chia hết cho 6

Khách vãng lai đã xóa
Nguyen tien dung
Xem chi tiết
Hậu duệ của Mặt trời
8 tháng 4 2016 lúc 20:35

ta có n^3+11n

= n^3-n+12n 

= n(n^2-1)+12n

= n(n-1)(n+1)+12n

Do n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 6 và 12n chia hết cho 6 nên 

n^3+11n chia hết cho 6 với n là số nguyên

CHƯA HIỂU CHỖ NÀO HỎI MK NHA BẠN 

Nhóc Cận
Xem chi tiết
Lê Gia Phong
17 tháng 9 2018 lúc 21:11

Ta có :

n\(^3\) + 11n

= n\(^3\) - n + 12n

= n ( n\(^2\) - 1 ) + 12n

= n ( n - 1 )( n + 1 ) + 12n

= ( n - 1 )n( n + 1 ) + 12n

Vì ( n - 1 )n( n + 1 ) là 3 số nguyên liên tiếp.

⇒ ( n - 1 )n( n + 3 ) có tích của 3 số nguyên liên tiếp nên phải chia hết cho 6.

Lại có : 12 sẽ chia hết cho 6

⇒ 12n chia hết cho 6

Vậy ( n - 1 )n( n + 1 ) + 12n sẽ chia hết cho 6

Vậy n\(^3\) + 11n chia hết cho 6

Young Forever ebxtos
Xem chi tiết
Võ Thị Quỳnh Giang
11 tháng 8 2017 lúc 15:03

ta có: A= \(n^3-6n^2+11n-6\)

<=>A=\(n^3-n^2-5n^2+5n+6n-6\)

<=>A=\(n^2\left(n-1\right)-5n\left(n-1\right)+6\left(n-1\right)\)

<=>A=\(\left(n^2-5n+6\right)\left(n-1\right)\)

<=>A=\(\left(n-1\right)\left(n-2\right)\left(n-3\right)\)

Mặt khác: (n-1) ; (n-2) ; (n-3) là 3 số liên tiếp nên \(\left(n-1\right)\left(n-2\right)\left(n-3\right)\) là tích của 3 số liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3. mà 2 và 3 nguyên tố cùng nhau nên A chia hét cho (2.3)=6

PeaPea
Xem chi tiết
soyeon_Tiểu bàng giải
20 tháng 8 2016 lúc 15:03

Ta có:

n3 + 11n

= n3 - n + 12n

= n.(n2 - 1) + 12n

= n.(n - 1).(n + 1) + 12n

= (n - 1).n.(n + 1) + 12n

Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3

Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6

=> n3 + 11n chia hết cho 6 ( đpcm)

PeaPea
Xem chi tiết
nhok cô đơn
1 tháng 1 2016 lúc 20:32

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

sumi yuri
Xem chi tiết
Trần Thị Xuân Hoa
6 tháng 1 2015 lúc 16:35

Ta có: n3+11n

= n3-n+12n

= n(n2-1)+12n

=(n-1)(n+1)n+12n

Vì n-1, n, n+1 là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6.

Mà 12n chia hết cho 6

=>n3+11n chia hết cho 6

sakura kinomoto
3 tháng 5 2016 lúc 12:57

ta co:n^3+11n

=n^3-n+12n

=n(n^2-1)+12n

=(n-1)(n+1)n+12n

Edogawa Conan
4 tháng 5 2016 lúc 16:12

=n^3-n+12n

=n(n^2-1)+12n

=(n-1)N+1)

Bông Y Hà
Xem chi tiết
Trịnh Thị Thúy Vân
20 tháng 9 2018 lúc 12:46

n3 + 11n = n3 - n + 12n = n(n2 - 1) + 12n

= n(n-1)(n+1) + 12n

Vì n; n-1; n+1 là 3 số tự nhiên liên tiếp ( do n là STN )

=> n(n-1)(n+1) chia hết cho 6 (1)

Vì 12 chia hết cho 6 nên 12n chia hết cho 6 (2)

Từ (1) và (2) => n(n-1)(n+1) + 12n chia hết cho 6

=> n3 + 11n chia hết cho 6