Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Ngọc Duy
Xem chi tiết
duc tuan nguyen
31 tháng 5 2017 lúc 20:33

ta chứng minh Q là nình phương của 1 số

ta thấy 20162+2016220172+20172=20162+20162(2016+1)2+(2016+1)2=20162+(2016+1)2(20162+1)=20162+(20162+1)(20162+2.2016+1)

                                                                                                      =20162+(20162+1)2+(20162+1)2.2016=(2016+20162+1)2

vậy Q=\(\sqrt{\left(2016+2016^2+1\right)^2}\)=2016+20162+1

Nguyễn Thanh Thủy
Xem chi tiết
Trần Diễm Quỳnh
9 tháng 6 2016 lúc 22:00

Đặt B = \(2016^2+2016^2\cdot2017^2+2017^2\)

      B = \(2016^2+2016^2\cdot\left(2016+1\right)^2+\left(2016+1\right)^2\)

      B = \(2016^2+2016^4+2\cdot2016^2\cdot2016+2016^2+\left(2016+1\right)^2\)

      B =\(2016^2+\left(2016^2+2016\right)^2+\left(2016+1\right)^2\)

      B = \(\left(2016+1\right)^2\left(2016^2+1\right)+2016^2\)

      B = \(2017^2\left(2017^2-2\cdot2016\right)+2016^2\)

      B = \(2017^2-2\cdot2017^2.2016+2016^2\)

      B = \(\left(2017^2-2012\right)^2\)

     => A = \(\sqrt{\left(2017^2-2016\right)^2}\)

         A =  \(2017^2-2016\)

Thuộc N => A là số tự nhiên

Minhchau Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2021 lúc 12:56

a: Ta có: \(A=2018^2-2017^2=2018+2017\)

\(B=2017^2-2016^2=2017+2016\)

mà 2018>2016

nên A>B

Nguyễn Ngọc Việt Ý
Xem chi tiết
mezool
Xem chi tiết
Yoona SNSD
Xem chi tiết
ta ngoc anh
Xem chi tiết
Ryan Nguyễn
Xem chi tiết
alibaba nguyễn
21 tháng 9 2016 lúc 22:07

Ta có (a1 + a2 + ...+a2016)3 = 20166051

<=> a13 + a23 +...+ a20163 + 3A = 20166051

Vì 20166051 và 3A chia hết cho 3 nên a13 + a23 +...+ a2016chia hết cho 3

nguyễn kim quang
Xem chi tiết