a) 5x - x^2 -7 < 0 với mọi giá trị của x
chứng tỏ :
5x - x^2 - 7 < 0 với mọi giá trị của x
\(5x-x^2-7=-x^2+5x-7=-\left(x^2-5x+7\right)\)
\(=-\left(x^2-2x\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7\right)\)
\(=-\left[\left(x^2-2x\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}+7\right]\)
\(=-\left[\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\right]< 0\forall x\)
trhgjuyjyhyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Chứng tỏ rằng đa thức:
a) A(x)= 5x3 +4x2 +7 -5x3 +x2 -2 luôn mang giá trị dương với mọi giá trị của x
b) B(x)= -5x2 +3x +7 +4x2 -3x -9 luôn mang giá trị âm với mọi giá trị của x
A(x) = 5x3 + 4x2 + 7 - 5x3 + x2 - 2
= 5x2 + 5
Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\Rightarrow5x^2+5\ge5>0\forall x\)
=> A(x) luôn dương với mọi x
B(x) = -5x2 + 3x + 7 + 4x2 - 3x - 9
= -x2 - 2
Ta có : \(x^2\ge0\forall x\Rightarrow-x^2\le0\Rightarrow-x^2-2\le-2< 0\forall x\)
=> B(x) luôn âm với mọi x
\(A\left(x\right)=\left(5x^3-5x^3\right)+\left(4x^2+x^2\right)+\left(7-2\right)=5x^2+5>0\)
\(B\left(x\right)=\left(-5x^2+4x^2\right)+\left(3x-3x\right)+\left(7-9\right)=-x^2-2< 0\)
a, \(A\left(x\right)=5x^3+4x^2+7-5x^3+x^2-2=5x^2+5\)
Ta có : \(\hept{\begin{cases}5x^2\ge0\\5>0\end{cases}}\)
Vậy A(x) luôn dương \(\forall x\)
b, \(B\left(x\right)=-5x^2+3x+7+4x^2-3x-9=-x^2-2\)
Ta có : \(\hept{\begin{cases}-x^2\ge0\\-2< 0\end{cases}}\)
Nên B(x) luôn âm \(\forall x\)
Tìm giá trị của m để:
a) \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\);
b) \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\)
a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)
Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)
Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)
b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)
Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta = 25 + 12m \le 0 \Leftrightarrow m \le - \frac{{25}}{{12}}\)
Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le - \frac{{25}}{{12}}\)
Chứng minh biểu thức 2x^2 - 5x + 8 > 0 với mọi giá trị của x
ta có:
2x2-5x+8=(x2-4x+4)+(x2-x+1/4)+15/4=(x-2)2+(x-1/2)2+15/4>0
a) Chứng minh rằng giá trị biểu thức sau không phụ thuộc vào x: (x + 3)^2 - (x - 5).(x + 5) - 6x
b) Chứng minh rằng: 25x^2 - 90 x + 100 > 0 với mọi x thuộc R
c) Tìm GTNN của biểu thức: A = x^2 + 5x + 7
d) Tính GTBT: A = 9x^2 + 42x + 49 với x = 1
Mong mọi người giúp với, mình đang cần gấp!!! Thanks
a) (x+3)^2-(x-5)(x+5)-6x
= x^2+6x+9-x^2+25-6x
= 9+25
= 94
vậy...
b) ta có: 25x^2-90x+100
= (5x)^2 - 2.5x.9 + 9^2 + 19
= (5x-9)^2 + 19
vì (5x-9)^2 >= 0 và 19>0 nên...
cmr: A= x^4 - 5x^2 . y^2 + 4y^4 không thể nhận giá trị 1987 với mọi giá trị nguyên của x,y
1.a)phân tích đa thức b)x2-36 thành nhân tử được kết quả là x²-36 2.((phép chia (5x³-3x²)+7:(x²+1)) 3.Biết x² - 2x + 1 = 25. Giá trị của x là: 4.câu nào sau đây là đúng nhất? Với mọi giá trị của các biến số , giá trị của biến: Dương Âm Không Âm
\(1,\\ b,=\left(x-6\right)\left(x+6\right)\\ 3,\\ x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
a) Tìm tất cả các tham số m nguyên để \(F\left(x\right)=\dfrac{7}{x^2+\dfrac{1}{2}m}\) có nghiệm x nguyên và F(x) là số nguyên dương.
b) Với mọi \(m\ge0\), tìm giá trị lớn nhất của F(x).
Với mọi m < 0, tìm giá trị nhỏ nhất của F(x).
a) Tìm số a để đa thức x² + 5x + a chia hết cho đa thức x - 1
b) Chứng minh rằng: x² – x + 1 > 0 với mọi số thực x?
c) Tìm giá trị nhỏ nhất của biểu thức A = x² – 6x + 11
d) Tìm giá trị lớn nhất của biểu thức B = – x² + 4x – 5
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2