Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Tuấn
Xem chi tiết
Nguyễn Đăng Linh
Xem chi tiết
trang
Xem chi tiết
nguyen thi vang
7 tháng 1 2021 lúc 19:38

Từ đk trên ta có:  \(2y^2+2zy+2z^2=2-3x^2\)

<=> \(3x^2+2y^2+2zy+2z^2=2\left(1\right)\)

<=>\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

Do (x-y)2≥0; (x-z)2≥0 nên từ(*) suy ra (x+y+z)2≤2

Hay \(-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Dấu "=" xảy ra khi x-y =0 và x-z=0 hay x=y=z

Thay vào (1) ta được 9x2=2 ; x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)

Với x=y=z =x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)thì max=\(\sqrt{2}\), min =\(-\sqrt{2}\)

Hoa Hồng
Xem chi tiết
Hoa Hồng
3 tháng 3 2018 lúc 20:45

mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần

Nguyễn Đức Duy
Xem chi tiết
 Huyền Trang
Xem chi tiết
Thu Cúc
Xem chi tiết
❤  Hoa ❤
Xem chi tiết

2x + 2y + z = 4(1)
A = 2xy + yz + xz(2)
(1) z=2c<=>x+y=2-c($)
(2)<=>2xy+2yc+2cx=A
A=2B<=>xy +(x+y).c=B
xy=B-c(2-c)
($:%)=> ton tai nghiem x,y
(c-2)^2≥4[B+c(c-2)]
c^2-4c+4≥4B+4c^2-8c
-3c^2+4c≥4B-4
-3(c^2-2.2/3c+4/9)≥4B-4-4/3
-3(c-2/3)^2≥4B-16/3
=> B≤4/3
A≤8/3
dang thuc khi c=2/3; z=1/3
x=y=2/3

Trần Nhật Dương
9 tháng 5 2019 lúc 20:45

A=2xy+yz+xzA=2xy+yz+xz

=2xy+y(4−2x−2y)+x(4−2x−2y)=2xy+y(4−2x−2y)+x(4−2x−2y)

=−2x2−2xy+4x−2y2+4y=−2x2−2xy+4x−2y2+4y

=[−(x2+2xy+y2)+83(x+y)−169]−(x2−43x+49)−(y−43y+49)+83=[−(x2+2xy+y2)+83(x+y)−169]−(x2−43x+49)−(y−43y+49)+83=−(x+y−43)2−(x−23)2−(y−23)2+83≤83=−(x+y−43)2−(x−23)2−(y−23)2+83≤83

Vậy Amax=83Amax=83 tại 

Nguyễn Viết Ngọc
9 tháng 5 2019 lúc 20:49

https://h.vn/hoi-dap/question/604792.html

Bn tham khảo tại đây nhé !

___G-Dragon___

Võ Nguyên Duy Hậu
Xem chi tiết
Hoàng Lê Bảo Ngọc
19 tháng 6 2016 lúc 21:15

Ta có : \(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow-\sqrt{2}\le B\le\sqrt{2}\)

Vậy \(MinB=-\sqrt{2}\Leftrightarrow x=y=z=-\frac{\sqrt{2}}{3}\)

\(MaxB=\sqrt{2}\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)