Cho hình vẽ. Chứng minh n // m vẽ hình rồi giải dùm mình luôn nha
Cho hình vẽ chứng minh rằng BD + CE <AB + AC giải giúp mình nha ! Vẽ hình giúp mình luôn nha
vẽ hình dùm mình luôn nha mn tks ạ
:a) Điện trở tương đương toàn mạch:
\(R_{12}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{60.40}{60+40}=24\left(\Omega\right)\)
b) Vì \(R_1//R_2\Rightarrow U=U_1=U_2=I_{12}.R_{tđ}=0,5.24=12\left(V\right)\)
Cường độ dòng điện qua mỗi điện trở:
\(I_1=\dfrac{U_1}{R_1}=\dfrac{12}{60}=0,2\left(A\right)\\ I_2=\dfrac{U_2}{R_2}=\dfrac{12}{40}=0,3\left(\Omega\right)\)
c) \(\left(R_1//R_2\right)ntR_3\)
Công suất điện R1:
\(P_1=U_1.I_1=12.0,2=2,4\left(W\right)\)
Công suất điện R3:
\(P_3=\dfrac{P_1}{2}=\dfrac{2,4}{2}=1,2\left(W\right)\)
\(R_{12}ntR_3\Rightarrow I_{12}=I_3=0,5\left(A\right)\)
Hiệu điện thế 2 đầu R3:
\(P_3=U_3.I_3\rightarrow U_3=\dfrac{P_3}{I_3}=\dfrac{1,2}{0,5}=2,4\left(V\right)\)
Điện trở R3:
\(R_3=\dfrac{U_3}{I_3}=\dfrac{2,4}{0,5}=4,8\left(\Omega\right)\)
Ko chắc :v
A) Tứ giác ABCD có AB = CD, AC = BD. Chứng minh ABCD là hình thang cân
B) Tứ giác ABCD có AD = AB = BC và góc A+góc C=180 độ. Chứng minh ABCD là hình thang cân
Mng vẽ hình ra nháp dùm mình nha xong rồi ib mail mình cho card 20k (nkhaduy@gmail.com)
1)cho tam giác ABC cân tại A.Gọi M là trung điểm của đường cao AH, D là giao điểm của CM và AB,N là trung điểm của BD.
a)chứng minh HN//BC
B)chứng minh AD=1phần 3 AB
(Vẽ hình dùm mình luongg nha)
2)Cho tam giác ABC cân tại A, đường cao AD kẽ DA vuông góc AC(H thuộc AC).Gọi I là trung điểm của DA,M là trung điểm của HC.chứng minh :
a)IM vuông góc AD
b)AI vuông góc DM
(Vẽ hình dùm mình luongg nha)
Giải hộ mình bài này nha (vẽ hình dùm mình luôn nha ^_^)
Cho góc nhọn xOy. Điểm H nằm trên tia phân giác của góc xOy. Từ H dựng các đường vuông góc xuống hai cạnh Ox và Oy ( A thuộc Ox và B thuộc Oy). Gọi D là hình chiếu của điếm A trên Oy, C là giao điểm của AD với OH. Chứng minh rằng:
a) Tam giác HAB cân
b) BC vuông góc với Ox
c) Khi góc xOy bằng 60o, chứng minh OA=2OD
Cho tứ giác ABCD có A=C=900, tia phân giác của B cắt cạnh AD tại E, tia phân giác của D cắt cạnh BC tại F. Chứng minh BE//DF
KHỎI VẼ HÌNH HÌNH VÀ GIẢI DÙM MÌNH NHA!
Em tham khảo nhé! Xem TH2:
Câu hỏi của Siêu sao bóng đá - Toán lớp 8 - Học toán với OnlineMath
Ở miền trong góc tù xOy,vẽ các tia Oz,Ot sao cho Oz _|_ Ox,Ot _|_ Oy
Chứng tỏ rằng:
a) xOt=yOt
b) xOy+zOt=180 độ
(bài này không có hình,các bạn vẽ hình dùm mình luôn nhé,mình cảm ơn)
1/ Cho tam giác ABC, M là trung điểm BC. Gọi H K theo thứ tự là hình chiếu của B và C trên đường thẳng AM. Chứng minh BHCK là hình bình hành và CH//BK
2/ Cho tam giác ABC, các đường trung tuyến BD và CE. Vẽ các điểm H và K sao cho E là trung điểm CH, D là trung điểm BK. Chứng minh A là trung điểm HK
3/ Cho hình bình hành ABCD (góc B < 90o). Ở phía ngoài hình bình hành, vẽ các tam giác vuông cân tại B là ABE và CBF. Chứng minh rằng DB= EF; DB vuông góc EF.
Vẽ hình dùm mình luôn nha!
Bài 2:
Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK
Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)
Do ED là đường trung bình tam giác BAK nên ED // AK (2)
Do ED là đường trung bình tam giác HCA nên ED // AH (3)
Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)
Từ (1) và (4) suy ra đpcm.
Bài 1:
Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!
Giải
Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)
Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK
Xét \(\Delta\)BMK và \(\Delta\)CMH có:
MH = MK (chứng minh trên)
^BMK = ^HMC
BM = CM (do M là trung điểm BC)
Suy ra \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)
Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)
Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)
Bài 3:
(so với mấy bài kia hình bài này người ra đề cho chẳng đẹp chút nào:( cộng với kỹ năng vẽ xấu của mình thì nó còn xấu thế :v)
Từ đề bài ta có AD = BC (do ABCD là hình bình hành); BC = BF (do tam giác CBF vuông cân tại B) (chỗ này mình không canh mãi mà nó vẫn ko bằng trên hình vẽ). Do đó AD = BF (cùng bằng BC)
Mặt khác tam giác ABE vuông cân tại B nên AB = AE
Do AD // BC nên ^DAB + ^ABC = 180o(1)
Mặt khác ta có ^ABC + ^EBF = 360o - (^ABE + ^CBF) = 180o (2)
Từ (1) và (2) suy ra ^DAB = ^EBF (cùng bù với ^ABC)
Từ đây ta dễ dàng chứng minh được tam giác ADB = tam giác FBE (c.g.c)
Suy ra DB = EF.
b) Chịu
Cho tam giác ABC có các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N. Chứng minh tứ giác BMNC là tứ giác nội tiếp
Vẽ hình ra luôn
GIÚP MÌNH NHA MAI MÌNH NỘP RỒI!!!!!!
Tự Vẽ Hình Nhé :
Theo tính chất đường phân giác ngoài của một góc luôn vuông góc với đường phân giác ngoài của góc đó
=> \(\widehat{MBN}=\widehat{MCN}=90^0\)nên hai góc \(\widehat{MBN}\)và \(\widehat{MCN}\)cùng nhìn MN dưới một góc bằng 90 độ. vậy Tứ giác MBNC nội tiếp đường tròn đường kính MN
mk ko có bít làm sao jờ ?
?????????????????
Cho tam giác ABC có các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N. Chứng minh tứ giác BMNC là tứ giác nội tiếp
Vẽ hình ra luôn
mk ko bít????tự làm nhé ^_^ !