E nhờ các thầy cô gợi ý cách làm bài 1 và bài 2 với ạ?
e nhờ các thầy cô gợi ý cách làm bài 2 với ạ
e nhờ thầy cô và các bạn gợi ý giúp em bài 4 với ạ
e nhờ thầy cô gợi ý 2 bài này giúp em ạ
(1)=x^3-y^3=7
<=>(x-y)(x^2+y^2+xy)=7
<=>(X-y)^3+3xy(x-y)=7
thay(2)vào
=>(x-y)^3+3.2=7
=>x-y=1
thay vào (2)=>=xy=2
=>y^2+y-2=0
___y=1 &-2
=>x=2&-1
(1)=x^3-y^3=7
<=>(x-y)(x^2+y^2+xy)=7
<=>(X-y)^3+3xy(x-y)=7
thay(2)vào
=>(x-y)^3+3.2=7
=>x-y=1
thay vào (2)=>=xy=2
=>y^2+y-2=0
y=1 &-2
=>x=2&-1
em nhờ các thầy cô gợi ý lời giải bài 17 và 18 giúp em ạ
Ta có : \(x^3+y^3=9< =>\left(x+y\right)\left(x^2-xy+y^2\right)=9\)
\(< =>x^2-xy+y^2=3\)
\(< =>\left(x+y\right)^2-3xy=3\)
\(< =>3xy=6< =>xy=2\)
giờ bạn chỉ cần giải hpt đơn giản này là đc nhé
Ta có : pt 1 <=> xy(x+y) = 2
kết hợp với pt 2 ta được \(x^2y^2+xy+1=3xy\)
\(< =>\left(xy+2\right)^2-\sqrt{3}^2=0\)
\(< =>\left(xy+2-\sqrt{3}\right)\left(xy+2+\sqrt{3}\right)=0\)
\(< =>\orbr{\begin{cases}xy=2-\sqrt{3}\\xy=2+\sqrt{3}\end{cases}}\)
đến đây dễ r , sai chỗ nào bạn chỉ mình nhé
17. \(\hept{\begin{cases}x+y=3\\x^3+y^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=3\\\left(x+y\right)\left(x^2-xy+y^2\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=3\\\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=9\end{cases}}\)
\(\Rightarrow3\left(3^2-3xy\right)=9\)
\(\Leftrightarrow9-3xy=3\)
\(\Leftrightarrow3xy=6\)
\(\Leftrightarrow xy=2\)
theo viet thì x;y là nghiệm của pt \(x^2-Sx+P=0\) trong đó \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\)
nên : \(x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
b, \(\hept{\begin{cases}x^2y+xy^2=2\\\left(x+y\right)\left(x^2y^2+xy+1\right)=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy\left(x+y\right)=2\\\left(x+y\right)\left(x^2y^2+xy+1\right)=6\end{cases}}\)
đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hệ trở thành
\(\hept{\begin{cases}PS=2\\S\left(P^2+S+1\right)=6\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}P=\frac{2}{S}\left(S\ne0\right)\\S\left(\frac{4}{S^2}+S+1\right)=6\end{cases}}\)
\(\Rightarrow\frac{4}{S}+S^2+S=6\)
\(\Leftrightarrow S^3+S^2-6S+4=0\)
\(\Leftrightarrow S^3-S^2+2S^2-2S-4S+4=0\)
\(\Leftrightarrow\left(S-1\right)\left(S^2+2S-1\right)=0\)
thôi ra cái đoạn S = 1 thì tính P, chứ 2 trường hợp còn lại xấu rồi P còn xấu hơn
Tìm tất cả các số nguyên tố \(p_1;p_2;p_3;...;p_8\) sao cho
\(p_1^2+p_2^2+p_3^2+.......+p_7^2=p^2_8\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán, gợi ý giúp đỡ em bài toán về chủ đề số học với ạ!
Em cám ơn nhiều lắm ạ!
Tìm các số nguyên tố \(p;q;r;s\) phân biệt sao cho \(p^3+q^3+r^3+s^3=1709\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán , gợi ý giúp đỡ em bài toán với ạ!
Em cám ơn nhiều lắm ạ!
Tìm tất cả các số nguyên dương \(n\) sao cho biểu thức sau \(P=n^3+7n^2+25n+39\) nhận giá trị là lũy thừa của một số nguyên tố?
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý và hỗ trợ em bài toán số học, em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
\(P=n^3+7n^2+25n+39=\left(n+3\right)\left(n^2+4n+13\right)\)
Hiển nhiên \(\left\{{}\begin{matrix}n+3>1\\n^2+4n+13>1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}n+3=p^a\\n^2+4n+13=p^b\end{matrix}\right.\) với \(b>a>0\)
\(\Rightarrow\left\{{}\begin{matrix}n+3⋮p\\n^2+4n+13⋮p\end{matrix}\right.\) \(\Rightarrow n^2+4n+13-\left(n+3\right)\left(n+1\right)⋮p\)
\(\Rightarrow10⋮p\Rightarrow\left[{}\begin{matrix}p=2\\p=5\end{matrix}\right.\)
- TH1: \(p=2\Rightarrow n+3=2^a\)
Do n nguyên dương \(\Rightarrow n+3\ge4\Rightarrow a\ge2\Rightarrow2^a⋮4\)
\(\Rightarrow n+3⋮4\Rightarrow n=4k+1\)
Đồng thời \(n^2+4n+13=2^b\), hiển nhiên \(b>2\Rightarrow n^2+4n+13⋮4\)
\(\Rightarrow\left(4k+1\right)^2+4\left(4k+1\right)+13⋮4\)
\(\Rightarrow4k\left(4k+6\right)+18⋮4\) (vô lý)
\(\Rightarrow p=2\) không thỏa mãn
TH2: \(p=5\) \(\Rightarrow\left\{{}\begin{matrix}n+3=5^a\\n^2+4n+13=5^b\end{matrix}\right.\)
\(\Rightarrow\left(n+1\right)\left(n+3\right)+10=5^b\)
\(\Rightarrow5^a\left(5^a-2\right)+10=5^b\)
\(\Rightarrow5^{a-1}\left(5^a-2\right)+2=5^{b-1}\)
- Với \(a=1\Rightarrow b=2\)
- Với \(a>1\Rightarrow\) vế trái chia 5 dư 2, vế phải chia hết cho 5
\(\Rightarrow\) Không tồn tại a;b nguyên thỏa mãn
Vậy \(a=1\Rightarrow n=5^1-3=2\)
e nhờ thầy cô gợi ý giúp e câu 6,12 với ạ
6. \(\hept{\begin{cases}x^2-3x=y\\y^2-3y=x\end{cases}}\)
\(\Rightarrow x^2-3y-y^2+3x=y-x\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+3\left(x-y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+3+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+y+4=0\end{cases}}\)
TH1 : x - y = 0 <=> x = y ta có : \(x^2-3x=x\) \(\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0=y\\x=4=y\end{cases}}\)
TH2 : x + y + 4 = 0 <=> y = -4-x ta có : \(x^2-3x=-x-4\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vonghiem\right)\)
12. \(\hept{\begin{cases}x^3+x^2y=10y\\y^3+xy^2=10x\end{cases}}\)
\(\Leftrightarrow x^3-y^3+x^2y-xy^2=10y-10x\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)+10\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2xy+y^2+10\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)^2+10\right]=0\)
mà có \(\left(x+y\right)^2+10>0\)
\(\Rightarrow x-y=0\Leftrightarrow x=y\)
ta có : \(x^3+x^3=10x\)
\(\Leftrightarrow2x^3-10x=0\Leftrightarrow2x\left(x^2-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0=y\\x=\pm\sqrt{5}=y\end{cases}}\)
mấy cái hệ đối xứng này lấy pt trên trừ dưới là ra thôi, thể nào cũng có nghiệm x=y
Tìm tất cả các số nguyên dương ( a, b) thỏa mãn điều kiện
\(\dfrac{a^2+b}{a.b-1}\) là số nguyên dương .
P/s: Em nhờ quý thầy cô giáo gợi ý và giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
\(a^2+b⋮ab-1\Rightarrow b\left(a^2+b\right)-a\left(ab-1\right)⋮ab-1\)
\(\Rightarrow a+b^2⋮ab-1\)
Do đó, vai trò của a và b là hoàn toàn như nhau.
TH1: \(a=b\Rightarrow\dfrac{a^2+a}{a^2-1}\in Z\Rightarrow\dfrac{a}{a-1}\in Z\Rightarrow1+\dfrac{1}{a-1}\in Z\)
\(\Rightarrow a=2\Rightarrow a=b=2\)
TH2: \(b>a\Rightarrow b\ge a+1\)
Do \(a^2+b⋮ab-1\Rightarrow a^2+b\ge ab-1\) (nếu \(a< b\) ta sẽ xét với \(a+b^2⋮ab-1\) cho kết quả tương tự nên ko cần TH3 \(a>b\))
\(a^2-1+2\ge ab-b\Rightarrow\left(a-1\right)\left(a+1\right)+2\ge b\left(a-1\right)\)
\(\Rightarrow\left(a-1\right)\left(b-a-1\right)\le2\)
\(\Rightarrow\left(a-1\right)\left(b-a-1\right)=\left\{0;1;2\right\}\)
TH2.1: \(\left(a-1\right)\left(b-a-1\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=a+1\end{matrix}\right.\)
- Với \(a=1\Rightarrow\dfrac{b+1}{b-1}\in Z\Rightarrow1+\dfrac{2}{b-1}\in Z\Rightarrow b=\left\{2;3\right\}\)
\(\Rightarrow\left(a;b\right)=\left(1;2\right);\left(1;3\right)\) (và 2 bộ hoán vị \(\left(2;1\right);\left(3;1\right)\) ứng với \(a>b\), lần sau sẽ hoán vị nghiệm luôn ko giải thích lại)
- Với \(b=a+1\Rightarrow\dfrac{a^2+a+1}{a^2+a-1}\in Z\Rightarrow1+\dfrac{2}{a^2+a-1}\in Z\)
\(\Rightarrow a^2+a-1=\left\{1;2\right\}\Rightarrow a=1\Rightarrow b=2\) giống như trên
TH2.2: \(\left(a-1\right)\left(b-a-1\right)=1\Rightarrow\left\{{}\begin{matrix}a-1=1\\b-a-1=1\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;4\right);\left(4;2\right)\)
TH2.3: \(\left(a-1\right)\left(b-a-1\right)=2=2.1=1.2\)
\(\Rightarrow\left(a;b\right)=\left(3;5\right);\left(5;3\right);\left(2;5\right);\left(5;2\right)\)
Vậy các bộ số thỏa mãn là: \(\left(1;2\right);\left(2;1\right);\left(1;3\right);\left(3;1\right);\left(2;2\right);\left(2;5\right);\left(5;2\right);\left(3;5\right);\left(5;3\right)\)