Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoa Thiên Cốt
Xem chi tiết
Lê Tâm Thư
Xem chi tiết
Wall HaiAnh
3 tháng 2 2018 lúc 20:33

Gọi 3 STN là a;a+1+a+2 (a\(\in\)N*)

\(\Rightarrow\)Tổng 3 STN là a+(a+1)+(a+2) 

                                 =3a+3\(⋮3\)

Vậy tồn tại 3 STN chia hết cho 3

Nguyễn Đức thành
Xem chi tiết
Trần Thị Hà Thu
Xem chi tiết
lưu gia phong
13 tháng 11 2015 lúc 18:30

http://d.violet.vn/uploads/resources/511/507795/preview.swf

BÀI 6

Nguyễn Thùy Dung
13 tháng 11 2015 lúc 18:31

sao phải xoắn ai chẳng lm đc

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 11 2018 lúc 11:07

Đề bài là 2011 chính xác hơn ( tất nhiên 2001 vẫn đúng, nhưng 2011 sẽ là số sát với lời giải hơn).

Ta làm như sau: Một số tự nhiên khi chia 2011 sẽ có thể có 2011 số dư 0;1;2;...;2010.

Chia các số dư này thành các nhóm 0, (1;2010), (2;2009),....,(1005;1006).

Có 1006 nhóm, mà có 1007 số nên theo nguyên lý Đirichle sẽ có 2 số ở cùng 1 nhóm. 2 số này sẽ có tổng hoặc hiệu chia hết cho 2011

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 7 2017 lúc 7:40

Đề bài là 2011 chính xác hơn ( tất nhiên 2001 vẫn đúng, nhưng 2011 sẽ là số sát với lời giải hơn). Ta làm như sau: Một số tự nhiên khi chia 2011 sẽ có thể có 2011 số dư 0;1;2;...;2010. Chia các số dư này thành các nhóm 0, (1;2010), (2;2009),....,(1005;1006). Có 1006 nhóm, mà có 1007 số nên theo nguyên lý Đirichle sẽ có 2 số ở cùng 1 nhóm. 2 số này sẽ có tổng hoặc hiệu chia hết cho 2011

BeckbernDZN VN
Xem chi tiết
GoKu Đại Chiến Super Man
Xem chi tiết
T
10 tháng 11 2015 lúc 21:39

Theo nguyên tắc Di-rich-lê ta có: Trong 42 số tự nhiên bất kì có it nhất 2 số khi chia cho 41 có cùng số dư.                              

=> Hiệu cuả 2 số đó chia hết cho 41

=> ĐPCM

 

Nguyễn Ngọc Linh Chi
Xem chi tiết
Ngo Tung Lam
2 tháng 3 2018 lúc 22:08

Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều

nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng

hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.