Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lemaingoc
Xem chi tiết
Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

addfx
Xem chi tiết
Kiều Vũ Linh
2 tháng 10 2023 lúc 16:23

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

Đăng Vinh Nguyễn
Xem chi tiết
Thảo Nguyên Xanh
25 tháng 9 2016 lúc 22:33

a, (x-1)(x-3)+11

=x2-3x-x+3+11

=(x-2)2+10

Vì..................................

b,5-4x2+4x

=-(4x2-4x+4)+9

=-(2x-2)2+9

...........................................................

Nguyen Manh
Xem chi tiết
Trung Kiên
Xem chi tiết
Thắng Nguyễn
14 tháng 2 2016 lúc 13:19

1/2 ở bài 1 là phân số à

Long_0711
Xem chi tiết
không tên
Xem chi tiết
Member lỗi thời :>>...
1 tháng 9 2021 lúc 14:37

Để A = 5 - 4x2 + 4 nhận giá trị lớn nhất

=> 4x2 nhỏ nhất mà x2 ≥ 0 ∀ x

=> 4x2 ≥ 0 mà 4x2 nhỏ nhất => 4x2 = 0

<=> x2 = 0 => x = 0

Khi đó : A = 5 - 0 + 4 = 9 

Vậy A nhận giá trị nhỏ nhất là 9 <=> x = 0

Khách vãng lai đã xóa
Member lỗi thời :>>...
1 tháng 9 2021 lúc 14:42

Để ( x - 1 ) . ( x - 3 ) + 11 nhận giá trị nhỏ nhất

=> x - 1 và x - 3 trái dấu mà x - 1 > x - 3 ∀ x 

\(\Rightarrow\orbr{\begin{cases}x-1>0\\x-3< 0\end{cases}}\Rightarrow\orbr{\begin{cases}x>-1\\x< 3\end{cases}}\)

=> x ∈ { 0 ; 1 ; 2 }

Ta xét các 3 trường hợp :

+) x = 0 => B = 14

+) x = 1 => B = 11

+) x = 2 => B = 10

Vậy B nhận giá trị nhỏ nhất là 10 <=> x = 2

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
1 tháng 9 2021 lúc 20:20

Sơn ( ✎﹏IDΣΛ亗 ) chịu :) làm kiểu đấy không ăn gạch đá vào mặt mới lạ=)

A = 5 - 4x2 + 4 = -4x2 + 9 ≤ 9 ∀ x

Dấu "=" xảy ra <=> x = 0 => MaxA = 9

B = ( x - 1 )( x - 3 ) + 11 = x2 - 4x + 3 + 11 = ( x2 - 4x + 4 ) + 10 = ( x - 2 )2 + 10 ≥ 10 ∀ x

Dấu "=" xảy ra <=> x = 2 => MaxB = 10

Khách vãng lai đã xóa
Nguyen Phuong Vy
Xem chi tiết
Nguyễn bá trung quân
18 tháng 10 2016 lúc 19:52

đơn giản wá 

Nguyễn Văn Tuấn Anh
8 tháng 7 2019 lúc 13:53

a) \(A=x^2-3x-x+3+11\) 

      \(=\left(x^2-4x+4\right)+10\)

      \(=\left(x-2\right)^2+10\ge10\forall x\in R\) 

Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\) 

b) \(B=5-4x^2+4x\) 

      \(=-\left(4x^2-4x+1\right)+6\) 

      \(=-\left(2x-1\right)^2+6\le6\forall x\in R\)

Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)

       \(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)

Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)