Cho \(\Delta\)ABC cân tại A, M là trung điểm BC. Tren AM lấy điểm N, BN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Cho tam giác ABC cân tại A, M là trung điểm của BC. trên tia AM lấy điểm N, BN cắt AC tại D, CN cắt AB ở E CMR BEDC là hình thang cân
Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.
Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.
Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.
a)Chứng minh : IE=IF
b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.
Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân
Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB
a)Chứng minh :DB là phân giác góc ADC
b)Chứng minh : DB vuông góc với BC
Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên đoạn AM lấy điểm N, BN cắt AC tại D, CN cắt Ab tại E.
CMR: BCDE là hình thang cân
△BMN=△CMN (c.g.c) ⇒ Góc MBN = MCN
△BDC=△CEB (g.c.g) ⇒ DC = EB và BD = CE
Có DC = BE mà AB = AC ⇒ AD = AE
Dùng định lí tổng 3 góc trong 1 tam giác tính đc Góc AED = ABC = 180- A ⇒ DE // BC
Xét tgiac BEDC có DE// BC
⇒TGIAC là hình thang, mà CE = BD
⇒đpcm
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
Bài 8. Cho hình thang cân ABCD (AB//CD) có ,AD=AB
a. Chứng minh rằng: BD là tia phân giác của góc ADC.
b. Chứng minh: BD⊥BC
Bài 9. Cho tam giác ABC cân ở A có M là trung điểm của BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E. Chứng minh BEDC là hình thang cân.
giúp mik vs ạ mik cho 5 sao
Cho tam giác ABC cân ở A. M là trung điểm BC. Trên tia AM lấy N. BN cắt AC ở D, CN cắt AB ở E, Chứng minh: BECD là hình thang cân
ta có: tam giác ABC cân tại A
mà AM là đường trung tuyến( M là trung điểm BC)
suy ra AM là đường trung trực của tam giác ABC
mà N thuộc AM(gt)
suy ra MN là đường trung trực của tam giác ABC
xét tam giác BNC có:BN=CN(MN là đg trung trực của tam giác ABC)
suy ra tam giác NBC cân tại N
suy ra NBC=NCB
mà ABD+NBC=ABC
ACE+NCB=ACB
mà ABC=ACB(tam giác ABC cân tại A)
suy ra ACE=ABD
xét tam giác ABD và tam giác ACE có:
ACE=ABD(cmt)
AB=AC(tam giác ABC cân tại A)
góc A chung
từ đó suy ra hai tam giác=nhau
suy ra AE=AD(c.c.t.ứ)
xét tam giác AED co:
AE=AD(cmt)
suy ra Tam giác AED cân tại A
suy ra AED=ADE=(180 độ-A):2
mà ABC=ACB=(180-BAC):2
từ 2 điều đó suy ra AED=ADE=ABC=ACB
mà các góc này ở vị trí đồng vị
suy ra ED song song BC
xét tứ giác EDCB có
ED song song BC(cmt)
suy ra tứ giác EDCB là hình thang
mà góc EBD=góc DCB
suy ra hình thang EDCB là hình thang cân
-
-
-
cho tam giác abc cân tại a. m, n, h lan luot la trung diem cua ab, ac, bc. ah cat mn lai o.
a, cm bmnc la hinh thang can.
b, chung minh amnh la hinh thoi
c, k la diem doi xung cua h qua n. cm b, o, k thang hang
d, BK cat ac tai d. CM ab=3ad
Cho tam giác ABC cân tại A, trên AB lấy điểm M, vẽ tia Mx//BC cắt AC tại N a) Chứng minh tam giác AMN là tam giác cân b) C/m tứ giác BMNC là hình thang cân c) C/m BN=CM
a: Xét ΔABC có
MN//BC
nên \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
mà AB=AC
nên AM=AN
Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
Cho tam giác ABC cân tại A, trên AB lấy điểm M, vẽ tia Mx//BC cắt AC tại N a) Chứng minh tam giác AMN là tam giác cân b) C/m tứ giác BMNC là hình thang cân c) C/m BN=CM
a) Ta có: MN//BC(gt)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ABC}\\\widehat{ANM}=\widehat{ACB}\end{matrix}\right.\)
Mà \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
=> Tam giác AMN cân tại A
b) Xét tứ giác BMNC có:
MN//BC
\(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)
=> BMNC là hthang cân
c) Ta có: BMNC là hthang cân
=> BN=MC
1. Cho tam giác ABC, trung tuyến AM. GỌi I là trung điểm của AM, CI cắt AB ở K. Chứng minh AB = 3AK
2. Cho tam giác ABC không cân, đường cao AH gọi M,N,P theo thứ tự là trung điểm của AB,BC,CA. Chứng minh M,P,N,H là hình thang cân
Cho tam giác ABC cân tại A , trên AB và AC lấy các điểm M,N sao cho BM=CN
a, CM tam giác AMN cân và AMN =ABC
b, MNBC là hình gì
c, Gọi E,F,G,H là trung điểm của AM ,AN NC, MB . Chứng minh EFGH Là hình thang cân
d, EF =3cm ,GH = 8CM . Tính BC
a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)
AN+NC=AC(N nằm giữa A và C)
mà MB=NC(gt)
và AB=AC(ΔABC cân tại A)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAMN cân tại A(cmt)
nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)
mà hai góc này là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác MNBC có MN//BC(cmt)
nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)
nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
c) Xét ΔAMN có
E là trung điểm của AM(gt)
F là trung điểm của AN(gt)
Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)
Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà MN//BC(cmt)
nên EF//BC(3)
Xét hình thang MNCB(MN//CB) có
H là trung điểm của MB(gt)
G là trung điểm của NC(gt)
Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)
Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)
Từ (3) và (4) suy ra EF//HG
Ta có: HG//BC(cmt)
nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{EHG}=\widehat{FGH}\)
Xét tứ giác EFGH có EF//HG(cmt)
nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)
Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)
nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)