Cm nếu: a + b + c = 0 thì a^4 + b^4 + c^4 = 2(ab + bc + ca)^2
Chứng minh rằng nếu:
a) \(a^2+b^2+c^2=ab+ac+bc\)thì a = b = c
b) \(a^3+b^3+c^3=3abc\)thì a = b = c hoặc a+ b +c = 0
c) a + b +c = 0 thì \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
a) a2 + b2 + c2 = ab + ac + bc
=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
=> (a - b)2 + (a - c)2 + (b - c)2 = 0
Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0
=> a = b = c
b) a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 - 3abc = 0
=> a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2 = 0
=> (a + b)3 + c3 - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0
=> a + b + c = 0
hoặc a2 + b2 + c2 = ab + bc + ac => a = b = c
a)\(a^2+b^2+c^2=ab+bc+ca\)\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Rightarrow a=b=c}\)
b)\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\hept{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Cho a,b,c>0 , ab+bc+ca=0
Cm 9a^4×b^2+ 9b^4×c^2+ 9c^4×a^2 》1
CMR nếu a,b,c ≠ 0 thỏa mãn ab+ac / 2 + bc+ba / 3 + ca+cb / 4 thì a/3 = b/5 =c/15
Cho a+b+c=0
CM: a^4+b^4+c^4=2(ab+bc+ca)^2
Ta có: \(a+b+c=0\)
\(\Rightarrow2abc\left(a+b+c\right)=0\)
\(\Rightarrow2a^2bc+2ab^2c+2abc^2=0\)
Ta lại có:
\(a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)^2\)
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2+4a^2bc+4ab^2c+4abc^2\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2+a^2bc+ab^2c+abc^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\left(đpcm\right)\)
(Nhớ k cho mình với nhoa!)
Cho A= x^4+ y^4 + z^4 - 2(ab)^2- 2(bc)^2 - 2(ca)^2 + abc(a+b+c).
CMR: nếu a,b,c là độ dài 3 cạnh của 1 tam giác thì A>=0.
Hmm giúp xem nào .-.
Cho `a,b,c>0,a^2+b^2+c^2=3`
`CM:1/(4-sqrt{ab})+1/(4-\sqrt{bc})+1/(4-\sqrt{ca})<=1`
Có \(\dfrac{1}{4-\sqrt{ab}}\le\dfrac{1}{4-\dfrac{\sqrt{2\left(a^2+b^2\right)}}{2}}=\dfrac{2}{8-\sqrt{2\left(a^2+b^2\right)}}\)
Tương tự: \(\dfrac{1}{4-\sqrt{bc}}\le\dfrac{2}{8-\sqrt{2\left(b^2+c^2\right)}}\), \(\dfrac{1}{4-\sqrt{ca}}\le\dfrac{2}{8-\sqrt{2\left(a^2+c^2\right)}}\)
Đặt \(\left(a^2+b^2;b^2+c^2;c^2+a^2\right)=\left(x;y;z\right)\)
Khi đó \(\left\{{}\begin{matrix}x+y+z=6\\z,y,z>0\end{matrix}\right.\) (1)
Đặt VT của bđt là A
Có \(A=\dfrac{1}{4-\sqrt{ab}}+\dfrac{1}{4-\sqrt{bc}}+\dfrac{1}{4-\sqrt{ca}}\le\dfrac{2}{8-\sqrt{2x}}+\dfrac{2}{8-\sqrt{2y}}+\dfrac{2}{8-\sqrt{2z}}\)
Ta cm bđt phụ: \(\dfrac{2}{8-\sqrt{2x}}\le\dfrac{1}{36}\left(x-2\right)+\dfrac{1}{3}\)
Thật vậy bđt trên tương đương \(\dfrac{6}{3\left(8-\sqrt{2x}\right)}-\dfrac{8-\sqrt{2x}}{3\left(8-\sqrt{2x}\right)}-\dfrac{1}{36}\left(x-2\right)\le0\)
\(\Leftrightarrow\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{3\left(8-\sqrt{2x}\right)}-\dfrac{\left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right)}{36}\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)\left[\dfrac{\sqrt{2}.12}{36\left(8-\sqrt{2x}\right)}-\dfrac{\left(\sqrt{x}+\sqrt{2}\right)\left(8-\sqrt{2x}\right)}{36\left(8-\sqrt{2x}\right)}\right]\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)^2.\dfrac{\left(\sqrt{x}-2\sqrt{2}\right)}{36\left(8-\sqrt{2x}\right)}\le0\) (*)
Từ (1) ta có \(x\in\left(0;6\right)\) nên bđt phụ trên luôn đúng
Tương tự ta cũng có \(\dfrac{2}{8-\sqrt{2y}}\le\dfrac{1}{36}\left(y-2\right)+\dfrac{1}{3}\) , \(\dfrac{2}{8-\sqrt{2z}}\le\dfrac{1}{36}\left(z-2\right)+\dfrac{1}{3}\)
Từ đó => \(A\le\dfrac{1}{36}\left(x+y+z-6\right)+1=\dfrac{1}{36}\left(6-6\right)+1=1\) (đpcm)
Dấu = xảy ra <=> x=y=z=2 <=> a=b=c=1
cmr nếu a,b,c,d khác 0 thỏa mãn ab+ac/2=ba+bc/3=ca+cb/4 thì a/3=b/5=c/15
Cho a,b,c>0. CM: \(\frac{a^4+b^4+c^4}{ab+bc+ca}+\frac{3abc}{a+b+c}\ge\frac{2}{3}.\left(a^2+b^2+c^2\right)\)
cho a+b+c=0 CM a^4 +b^4+c^4=
2(a^2*b^2+b^2*c^2+c^2*a^2)
2(ab+bc+ca)^2
(a^2+b^2+c^2)^2 \ 2